Equivalence of Definitions of Matroid/Definition 1 implies Definition 4
Jump to navigation
Jump to search
Theorem
Let $M = \struct {S, \mathscr I}$ be an independence system.
Let $M$ also satisfy:
\((\text I 3)\) | $:$ | \(\ds \forall U, V \in \mathscr I:\) | \(\ds \size V < \size U \implies \exists x \in U \setminus V : V \cup \set x \in \mathscr I \) |
Then $M$ satisfies:
\((\text I 6)\) | $:$ | \(\ds \forall A \subseteq S:\) | \(\ds \text{ all maximal subsets } Y \subseteq A \text{ with } Y \in \mathscr I \text{ have the same cardinality} \) |
Proof
Let $M$ satisfy condition $(\text I 3)$.
Let $A \subseteq S$.
Let $Y_1, Y_2$ be maximal independent subsets of $A$.
Without loss of generality, let:
- $\size {Y_2} \le \size {Y_1}$
Aiming for a contradiction, suppose:
- $\size {Y_2} < \size {Y_1}$
By condition $(\text I 3)$:
- $\exists y \in Y_1 \setminus Y_2 : Y_2 \cup \set y \in \mathscr I$
From Union of Subsets is Subset:
- $Y_2 \cup \set y \subseteq A$
This contradicts the maximality of $Y_2$.
Then:
- $\size {Y_2} = \size {Y_1}$
It follows that $M$ satisifies $(\text I 6)$.
$\blacksquare$