Equivalence of Definitions of Semantic Equivalence for Boolean Interpretations

From ProofWiki
Jump to navigation Jump to search

Theorem

The following definitions of the concept of Semantic Equivalence for Boolean Interpretations are equivalent:

Let $\mathbf A, \mathbf B$ be WFFs of propositional logic.

Definition 1

Then $\mathbf A$ and $\mathbf B$ are equivalent for boolean interpretations if and only if:

$\mathbf A \models_{\mathrm{BI}} \mathbf B$ and $\mathbf B \models_{\mathrm{BI}} \mathbf A$

that is, each is a semantic consequence of the other.


That is to say, $\mathbf A$ and $\mathbf B$ are equivalent if and only if:

$\map v {\mathbf A} = T$ if and only if $\map v {\mathbf B} = T$

for all boolean interpretations $v$.


Definition 2

Then $\mathbf A$ and $\mathbf B$ are equivalent for boolean interpretations if and only if:

$\map v {\mathbf A} = \map v {\mathbf B}$

for all boolean interpretations $v$.


Definition 3

Then $\mathbf A$ and $\mathbf B$ are equivalent for boolean interpretations if and only if:

$\mathbf A \iff \mathbf B$ is a tautology

where $\iff$ is the biconditional connective.


Proof

Definition 1 implies Definition 2

Let $\mathbf A, \mathbf B$ be equivalent according to definition 1.

Let $v$ be a boolean interpretation.


By definition. either $v \left({\mathbf A}\right) = T$ or $v \left({\mathbf A}\right) = F$.


In the first case, it follows by hypothesis that $v \left({\mathbf B}\right) = T$.

In particular, then:

$v \left({\mathbf A}\right) = v \left({\mathbf B}\right)$


In the second case, it must be that $v \left({\mathbf B}\right) \ne T$.

That is, $v \left({\mathbf B}\right) = F$, so that:

$v \left({\mathbf A}\right) = v \left({\mathbf B}\right)$


Hence $\mathbf A$ and $\mathbf B$ are also equivalent in the sense of definition 2.

$\Box$


Definition 2 implies Definition 3

Let $\mathbf A, \mathbf B$ be equivalent according to definition 2.


By definition of the boolean interpretation of $\iff$:

$v \left({\mathbf A \iff \mathbf B}\right)= T$ if and only if $v \left({\mathbf A}\right) = v \left({\mathbf B}\right)$

Therefore, by hypothesis and definition of tautology:

$\mathbf A \iff \mathbf B$

is a tautology.

$\Box$


Definition 3 implies Definition 1

Let $\mathbf A, \mathbf B$ be equivalent according to definition 3.

That is, let $\mathbf A \iff \mathbf B$ be a tautology.


From the boolean interpretation of $\iff$, we have:

$v \left({\mathbf A}\right) = v \left({\mathbf B}\right)$

for every boolean interpretation $v$.


Therefore it immediately follows that:

$v \left({\mathbf A}\right) = T$ if and only if $v \left({\mathbf B}\right) = T$

i.e. $\mathbf A$ and $\mathbf B$ are equivalent in the sense of definition 1.

$\blacksquare$


Sources