Equivalence of Definitions of Square Number
Jump to navigation
Jump to search
Theorem
The following definitions of the concept of Square Number are equivalent:
Definition 1
An integer $n$ is classified as a square number if and only if:
- $\exists m \in \Z: n = m^2$
where $m^2$ denotes the integer square function.
Definition 2
- $S_n = \begin {cases} 0 & : n = 0 \\ S_{n - 1} + 2 n - 1 & : n > 0 \end {cases}$
Definition 3
- $\ds S_n = \sum_{i \mathop = 1}^n \paren {2 i - 1} = 1 + 3 + 5 + \cdots + \paren {2 n - 1}$
Definition 4
- $\forall n \in \N: S_n = \map P {4, n} = \begin{cases} 0 & : n = 0 \\ \map P {4, n - 1} + 2 \paren {n - 1} + 1 & : n > 0 \end{cases}$
where $\map P {k, n}$ denotes the $k$-gonal numbers.
Proof
Definition 1 equivalent to Definition 3
By the Odd Number Theorem:
- $\ds \sum_{j \mathop = 1}^n \paren {2 j - 1} = n^2$
$\Box$
Definition 2 equivalent to Definition 3
By the Corollary to the Odd Number Theorem:
- $S_n = \ds \sum_{j \mathop = 1}^{n - 1} + 2 n - 1$
and so by Definition 2:
- $\ds \sum_{j \mathop = 1}^n \paren {2 j - 1} = S_{n-1} + 2 n - 1$
$\Box$
Definition 2 equivalent to Definition 4
We have by definition that $S_n = 0 = \map P {4, n}$.
Then:
\(\ds \forall n \in \N_{>0}: \, \) | \(\ds \map P {4, n}\) | \(=\) | \(\ds \map P {4, n - 1} + \paren {4 - 2} \paren {n - 1} + 1\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \map P {4, n - 1} + 2 \paren {n - 1} + 1\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map P {4, n - 1} + 2 n - 1\) |
Thus $\map P {4, n}$ and $S_n$ are generated by the same recurrence relation.
$\blacksquare$