Category:Square Numbers

From ProofWiki
Jump to navigation Jump to search

This category contains results about Square Numbers.
Definitions specific to this category can be found in Definitions/Square Numbers.


Square numbers are those denumerating a collection of objects which can be arranged in the form of a square.


They can be denoted:

$S_1, S_2, S_3, \ldots$


Definition 1

An integer $n$ is classified as a square number if and only if:

$\exists m \in \Z: n = m^2$

where $m^2$ denotes the integer square function.


Definition 2

$S_n = \begin {cases} 0 & : n = 0 \\ S_{n - 1} + 2 n - 1 & : n > 0 \end {cases}$


Definition 3

$\ds S_n = \sum_{i \mathop = 1}^n \paren {2 i - 1} = 1 + 3 + 5 + \cdots + \paren {2 n - 1}$


Definition 4

$\forall n \in \N: S_n = \map P {4, n} = \begin{cases} 0 & : n = 0 \\ \map P {4, n - 1} + 2 \paren {n - 1} + 1 & : n > 0 \end{cases}$

where $\map P {k, n}$ denotes the $k$-gonal numbers.

Subcategories

This category has the following 31 subcategories, out of 31 total.

L

O

Pages in category "Square Numbers"

The following 127 pages are in this category, out of 127 total.

S