Euclidean Algorithm/Examples/12378 and 3054/Integer Combination
Jump to navigation
Jump to search
Examples of Use of Euclidean Algorithm
$6$ can be expressed as an integer combination of $12378$ and $3054$:
- $6 = 132 \times 12378 - 535 \times 3054$
Note also that:
- $6 = 3186 \times 12378 - 12913 \times 3054$
by adding $3054 \times 12378$ to both sides.
Proof
From Euclidean Algorithm: $12378$ and $3054$ we have:
- $\gcd \set {12378, 3054} = 6$
Then we have:
\(\ds 6\) | \(=\) | \(\ds 24 - 1 \times 18\) | from $(5)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds 24 - 1 \times \paren {138 - 5 \times 24}\) | from $(4)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds 6 \times 24 - 1 \times 138\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 6 \times \paren {162 - 1 \times 138} - 1 \times 138\) | from $(3)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds 6 \times 162 - 7 \times 138\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 6 \times 162 - 7 \times \paren {3054 - 18 \times 162}\) | from $(2)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds 132 \times 162 - 7 \times 3054\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 132 \times \paren {12378 - 4 \times 3054} - 7 \times 3054\) | from $(1)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds 132 \times 12378 - 535 \times 3054\) |
$\blacksquare$
Sources
- 1980: David M. Burton: Elementary Number Theory (revised ed.) ... (previous) ... (next): Chapter $2$: Divisibility Theory in the Integers: $2.3$ The Euclidean Algorithm