Euclidean Algorithm/Examples/12378 and 3054/Integer Combination

From ProofWiki
Jump to navigation Jump to search

Examples of Use of Euclidean Algorithm

$6$ can be expressed as an integer combination of $12378$ and $3054$:

$6 = 132 \times 12378 - 535 \times 3054$


Note also that:

$6 = 3186 \times 12378 - 12913 \times 3054$

by adding $3054 \times 12378$ to both sides.


Proof

From Euclidean Algorithm: $12378$ and $3054$ we have:

$\gcd \set {12378, 3054} = 6$


Then we have:

\(\ds 6\) \(=\) \(\ds 24 - 1 \times 18\) from $(5)$
\(\ds \) \(=\) \(\ds 24 - 1 \times \paren {138 - 5 \times 24}\) from $(4)$
\(\ds \) \(=\) \(\ds 6 \times 24 - 1 \times 138\)
\(\ds \) \(=\) \(\ds 6 \times \paren {162 - 1 \times 138} - 1 \times 138\) from $(3)$
\(\ds \) \(=\) \(\ds 6 \times 162 - 7 \times 138\)
\(\ds \) \(=\) \(\ds 6 \times 162 - 7 \times \paren {3054 - 18 \times 162}\) from $(2)$
\(\ds \) \(=\) \(\ds 132 \times 162 - 7 \times 3054\)
\(\ds \) \(=\) \(\ds 132 \times \paren {12378 - 4 \times 3054} - 7 \times 3054\) from $(1)$
\(\ds \) \(=\) \(\ds 132 \times 12378 - 535 \times 3054\)

$\blacksquare$


Sources