Category:Examples of Euclidean Algorithm
Jump to navigation
Jump to search
This category contains examples of Euclidean Algorithm.
The Euclidean algorithm is a method for finding the greatest common divisor (GCD) of two integers $a$ and $b$.
Let $a, b \in \Z$ and $a \ne 0 \lor b \ne 0$.
The steps are:
- $(1): \quad$ Start with $\tuple {a, b}$ such that $\size a \ge \size b$. If $b = 0$ then the task is complete and the GCD is $a$.
- $(2): \quad$ If $b \ne 0$ then you take the remainder $r$ of $\dfrac a b$.
- $(3): \quad$ Set $a \gets b, b \gets r$ (and thus $\size a \ge \size b$ again).
- $(4): \quad$ Repeat these steps until $b = 0$.
Thus the GCD of $a$ and $b$ is the value of the variable $a$ after the termination of the algorithm.
Pages in category "Examples of Euclidean Algorithm"
The following 37 pages are in this category, out of 37 total.
E
- Euclidean Algorithm/Examples
- Euclidean Algorithm/Examples/108 and 243
- Euclidean Algorithm/Examples/119 and 272
- Euclidean Algorithm/Examples/119 and 272/Integer Combination
- Euclidean Algorithm/Examples/119 and 272/Proof
- Euclidean Algorithm/Examples/12321 and 8658
- Euclidean Algorithm/Examples/12378 and 3054
- Euclidean Algorithm/Examples/12378 and 3054/Integer Combination
- Euclidean Algorithm/Examples/129 and 301
- Euclidean Algorithm/Examples/132 and 473
- Euclidean Algorithm/Examples/143 and 227
- Euclidean Algorithm/Examples/156 and 1740
- Euclidean Algorithm/Examples/1769 and 2378
- Euclidean Algorithm/Examples/1769 and 2378/Integer Combination
- Euclidean Algorithm/Examples/1769 and 2378/Proof
- Euclidean Algorithm/Examples/2145 and 1274
- Euclidean Algorithm/Examples/2190 and 465
- Euclidean Algorithm/Examples/24 and 138
- Euclidean Algorithm/Examples/24 and 138/Integer Combination
- Euclidean Algorithm/Examples/24 and 138/Proof
- Euclidean Algorithm/Examples/272 and 1479
- Euclidean Algorithm/Examples/299 and 481
- Euclidean Algorithm/Examples/306 and 657
- Euclidean Algorithm/Examples/31x = 1 mod 56
- Euclidean Algorithm/Examples/341 and 527
- Euclidean Algorithm/Examples/341 and 527/Integer Combination
- Euclidean Algorithm/Examples/341 and 527/Proof
- Euclidean Algorithm/Examples/361 and 1178
- Euclidean Algorithm/Examples/527 and 765
- Euclidean Algorithm/Examples/56 and 72
- Euclidean Algorithm/Examples/56 and 72/Integer Combination
- Euclidean Algorithm/Examples/56 and 72/Proof
- Euclidean Algorithm/Examples/9n+8 and 6n+5
- Euclidean Algorithm/Least Absolute Remainder/Examples
- Euclidean Algorithm/Least Absolute Remainder/Examples/12378 and 3054
- Euclidean Domain/Euclidean Algorithm/Examples
- Euclidean Domain/Euclidean Algorithm/Examples/5 i and 3 + i in Gaussian Integers