Euclidean Metric on Real Number Space is Translation Invariant

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\tau_{\mathbf t}: \R^n \to \R^n$ denote the translation of the real Euclidean space of $n$ dimensions by the vector $\mathbf t = \tuple {t_1, t_2, \ldots, t_n}$.

Let $d_2$ denote the Euclidean metric on $\R^n$.


Then $d_2$ is unchanged by application of $\tau$:

$\forall \mathbf x, \mathbf y \in \R^n: \map {d_2} {\map \tau {\mathbf x}, \map \tau {\mathbf y} } = \map {d_2} {\mathbf x, \mathbf y}$


Proof

Let $\mathbf x = \tuple {x_1, x_2, \ldots, x_n}$ and $\mathbf y = \tuple {y_1, y_2, \ldots, y_n}$ be arbitrary points in $\R^n$.

Then:

\(\ds \map {d_2} {\map \tau {\mathbf x}, \map \tau {\mathbf y} }\) \(=\) \(\ds \map {d_2} {\mathbf x - \mathbf t, \mathbf y - \mathbf t}\) Definition of Translation in Euclidean Space
\(\ds \) \(=\) \(\ds \sqrt {\paren {\sum_{i \mathop = 1}^n \paren {\paren {x_i - t_i} - \paren {y_i - t_i} }^2} }\) Definition of $\mathbf t$, Definition of Euclidean Metric on Real Vector Space
\(\ds \) \(=\) \(\ds \sqrt {\paren {\sum_{i \mathop = 1}^n \paren {x_i - y_i}^2} }\) simplification
\(\ds \) \(=\) \(\ds \map {d_2} {\mathbf x, \mathbf y}\) Definition of Euclidean Metric on Real Vector Space

$\blacksquare$


Sources

where the exercise is limited to the Euclidean plane