Euler's Cosine Identity/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\cos z = \dfrac {e^{i z} + e^{-i z} } 2$


Proof

Recall Euler's Formula:

$e^{i z} = \cos z + i \sin z$


Then, starting from the right hand side:

\(\ds \frac {e^{i z} + e^{-i z} } 2\) \(=\) \(\ds \frac {\cos z + i \sin z + \map \cos {-z} + i \map \sin {-z} } 2\)
\(\ds \) \(=\) \(\ds \frac {\cos z + \map \cos {-z} } 2\) Sine Function is Odd
\(\ds \) \(=\) \(\ds \frac {2 \cos z} 2\) Cosine Function is Even
\(\ds \) \(=\) \(\ds \cos z\)

$\blacksquare$