Euler's Cosine Identity/Real Domain/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\cos x = \dfrac {e^{i x} + e^{-i x} } 2$


Proof

Recall Euler's Formula:

$e^{i x} = \cos x + i \sin x$


Then, starting from the right hand side:

\(\ds \frac {e^{i x} + e^{-i x} } 2\) \(=\) \(\ds \frac {\cos x + i \sin x + \map \cos {-x} + i \map \sin {-x} } 2\)
\(\ds \) \(=\) \(\ds \frac {\cos x + \map \cos {-x} } 2\) Sine Function is Odd
\(\ds \) \(=\) \(\ds \frac {2 \cos x} 2\) Cosine Function is Even
\(\ds \) \(=\) \(\ds \cos x\)

$\blacksquare$