Euler's Cotangent Identity/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\cot z = i \dfrac {e^{i z} + e^{-i z} } {e^{i z} - e^{-i z} }$


Proof

We have, by hypothesis, that $z$ is a complex number such that:

$\forall k \in \Z: z \ne k \pi$

Therefore:

$\sin z \ne 0$

It follows from the definition of the complex cotangent function that:

$\cot z$

is well-defined.


Hence:

\(\ds \cot z\) \(=\) \(\ds \frac {\cos z} {\sin z}\) Definition of Complex Cotangent Function
\(\ds \) \(=\) \(\ds \frac {e^{i z} + e^{-i z} } 2 / \frac {e^{i z} - e^{-i z} } {2 i}\) Euler's Sine Identity and Euler's Cosine Identity
\(\ds \) \(=\) \(\ds i \frac {e^{i z} + e^{-i z} } {e^{i z} - e^{-i z} }\) multiplying numerator and denominator by $2 i$

$\blacksquare$