Definition:Well-Defined
Definition
Well-Defined Mapping
Let $f: S \to T$ be a mapping.
Let $\RR$ be an equivalence relation on $S$.
Let $S / \RR$ be the quotient set determined by $\RR$.
Let $\phi: S / \RR \to T$ be a mapping such that:
- $\map \phi {\eqclass x \RR} = \map f x$
Then $\phi: S / \RR \to T$ is well-defined if and only if:
- $\forall \tuple {x, y} \in \RR: \map f x = \map f y$
Well-Defined Relation
The concept can be generalized to include the general relation $\RR: S \to T$.
Let $\RR$ be an equivalence relation on $S$.
For $x \in S$, let $\eqclass x \RR$ denote the equivalence class of $x$ under $\RR$.
Let $S / \RR$ be the quotient set of $S$ determined by $\RR$.
Let $\QQ$ be a relation on $S / \RR$.
Then $\QQ$ is well-defined if and only if:
- for arbitrary $x, y, x', y' \in S$ such that:
- $x \mathrel \RR x'$
- $y \mathrel \RR y'$
- we have that:
- $\tuple {\eqclass x \RR, \eqclass y \RR} \in \QQ \iff \tuple {\eqclass {x'} \RR, \eqclass {y'} \RR} \in \QQ$
Well-Defined Operation
Let $\struct {S, \circ}$ be an algebraic structure.
Let $\RR$ be a congruence for $\circ$.
Let $\circ_\RR$ be the operation induced on $S / \RR$ by $\circ$.
Let $\struct {S / \RR, \circ_\RR}$ be the quotient structure defined by $\RR$, where $\circ_\RR$ is defined as:
- $\eqclass x \RR \circ_\RR \eqclass y \RR = \eqclass {x \circ y} \RR$
Then $\circ_\RR$ is well-defined (on $S / \RR$) if and only if:
- $x, x' \in \eqclass x \RR, y, y' \in \eqclass y \RR \implies \eqclass {x \circ y} \RR = \eqclass {x' \circ y'} \RR$
Also known as
Some sources use the term consistent for well-defined.
Some sources do not hyphenate: well defined.
Sources
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): well defined