Euler Phi Function of Non-Square Semiprime/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n \in \Z_{>0}$ be a semiprime with distinct prime factors $p$ and $q$.

Let $\map \phi n$ denote the Euler $\phi$ function.

Then:

$\map \phi n = \paren {p - 1} \paren {q - 1}$


Proof

A semiprime with distinct prime factors is a square-free integer.

$\map \phi n = \ds \prod_{\substack {p \mathop \divides n \\ p \mathop > 2} } \paren {p - 1}$

where $p \divides n$ denotes the primes which divide $n$.

As there are $2$ prime factors: $p$ and $q$, this devolves to:

$\map \phi n = \paren {p - 1} \paren {q - 1}$

except when $p = 2$, in which case:

$\map \phi n = q - 1$

But when $p = 2$, we have that $p - 1 = 1$ and so:

$\paren {p - 1} \paren {q - 1} = q - 1$

Hence the result.

$\blacksquare$


Examples

Euler Phi Function of $87$

$\phi \left({87}\right) = 56$


Euler Phi Function of $91$

$\map \phi {91} = 72$


Euler Phi Function of $95$

$\phi \left({95}\right) = 72$


Euler Phi Function of $111$

$\phi \left({111}\right) = 72$


Euler Phi Function of $1257$

$\phi \left({1257}\right) = 836$