Euler Phi Function of Square-Free Integer/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n$ be an integer such that $n \ge 2$.

Let $n$ be square-free.

Let $\map \phi n$ be the Euler $\phi$ function of $n$.

That is, let $\map \phi n$ be the count of strictly positive integers less than or equal to $n$ which are prime to $n$.


Then:

$\map \phi n = \ds \prod_{\substack {p \mathop \divides n \\ p \mathop > 2} } \paren {p - 1}$

where $p \divides n$ denotes the primes which divide $n$.


Proof

We have that the Euler Phi Function is Multiplicative.

Let the prime decomposition of $n$ be:

$\ds n = \prod_{1 \mathop \le i \mathop \le r} p_i = p_1 p_2 \cdots p_r$

From the definition of prime number, each of the prime factors of $n$ is coprime to all other divisors of $n$.

From Euler Phi Function of Prime, we have:

$\map \phi {p_i} = \paren {p_i - 1}$

Thus:

$\map \phi n = \ds \prod_{1 \mathop \le i \mathop \le r} \paren {p_i - 1}$

or:

$\map \phi n = \ds \prod_{p \mathop \divides n} \paren {p - 1}$

where $p$ ranges over all prime numbers


When $p = 2$ we have that:

$p - 1 = 1$

and so:

$\ds \prod_{p \mathop \divides n} \paren {p - 1} = \prod_{\substack {p \mathop \divides n \\ p \mathop > 2} } \paren {p - 1}$

Hence the result.

$\blacksquare$


Examples

Euler Phi Function of $6$

$\map \phi 6 = 2$


Euler Phi Function of $30$

$\map \phi {30} = 8$


Euler Phi Function of $42$

$\map \phi {42} = 12$


Euler Phi Function of $78$

$\map \phi {78} = 24$


Euler Phi Function of $182$

$\map \phi {182} = 72$


Euler Phi Function of $190$

$\map \phi {190} = 72$


Euler Phi Function of $222$

$\map \phi {222} = 72$


Euler Phi Function of $1798$

$\map \phi {1798} = 840$


Euler Phi Function of $5002$

$\map \phi {5002} = 2400$


Euler Phi Function of $9374$

$\map \phi {9374} = 4536$