Euler Triangle Formula/Lemma 2/Proof 2

From ProofWiki
Jump to navigation Jump to search

Lemma to Euler Triangle Formula

EulerTriangleLemma.png


Let the bisector of angle $C$ of triangle $\triangle ABC$ be produced to the circumcircle at $P$.

Let $I$ be the incenter of $\triangle ABC$.

Then:

$AP = BP = IP$


Proof

We have by hypothesis:

$AI$, $BI$ and $CI$ bisect their respective angles.

Let the half-angles be:

$\alpha = \dfrac 1 2 \angle CAB$
$\beta = \dfrac 1 2 \angle ABC$
$\gamma = \dfrac 1 2 \angle BCA$
EulerTriangleLemma-2a.png
\(\ds AP\) \(=\) \(\ds BP\) Equal Angles in Equal Circles
\(\ds \angle BAP\) \(=\) \(\ds \gamma\) Angles on Equal Arcs are Equal
\(\ds \angle API\) \(=\) \(\ds \angle ABC = 2 \beta\) Angles on Equal Arcs are Equal
\(\ds \leadsto \ \ \) \(\ds \angle IAP\) \(=\) \(\ds \alpha + \gamma\)
\(\ds \angle AIP\) \(=\) \(\ds \alpha + \gamma\) Sum of Angles of Triangle equals Two Right Angles

By Triangle with Two Equal Angles is Isosceles

$\triangle AIP$ is isosceles

$\leadsto$:

$AP = BP = IP$

$\blacksquare$