Eulerian Logarithmic Integral is Asymptotic to Prime-Counting Function

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x \in \R$ be a real number such that $x > 2$.

Let $\map \Li x$ denote the Eulerian logarithmic integral of $x$.

Let $\map \pi x$ denote the prime-counting function of $x$.


Then $\map \Li x$ is asymptotically equal to $\map \pi x$.


Proof




Examples

Example: $10^6$

\(\ds \map \Li {10^6}\) \(\approx\) \(\ds 78 \, 628\)
\(\ds \map \pi {10^6}\) \(=\) \(\ds 78 \, 498\)
\(\ds \leadsto \ \ \) \(\ds \dfrac {\map \Li {10^6} } {\map \pi {10^6} }\) \(\approx\) \(\ds 1 \cdotp 00166\)


Sources