Logarithmic Integral and Eulerian Logarithmic Integral Differ by Constant

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x \in \R$ be a real number such that $x > 2$.

Let $\map \li x$ denote the logarithmic integral of $x$.

Let $\map \Li x$ denote the Eulerian logarithmic integral of $x$.

Then $\map \li x - \map \Li x$ is a constant.


Proof

\(\ds \map \li x - \map \Li x\) \(=\) \(\ds \PV_0^x \frac {\d t} {\ln t} - \int_2^x \frac {\d t} {\ln t}\) Definition of Logarithmic Integral, Definition of Eulerian Logarithmic Integral
\(\ds \) \(=\) \(\ds \lim_{\varepsilon \mathop \to 0^+} \paren {\int_\varepsilon^{1 - \varepsilon} \frac {\rd t} {\ln t} + \int_{1 + \varepsilon}^x \frac {\rd t} {\ln t} } - \int_2^x \frac {\d t} {\ln t}\) Definition of Cauchy Principal Value
\(\ds \) \(=\) \(\ds \lim_{\varepsilon \mathop \to 0^+} \paren {\int_\varepsilon^{1 - \varepsilon} \frac {\rd t} {\ln t} + \int_{1 + \varepsilon}^x \frac {\rd t} {\ln t} } - \int_2^x \frac {\d t} {\ln t}\)
\(\ds \) \(=\) \(\ds \lim_{\varepsilon \mathop \to 0^+} \paren {\int_\varepsilon^{1 - \varepsilon} \frac {\rd t} {\ln t} + \int_{1 + \varepsilon}^2 \frac {\rd t} {\ln t} } + \int_2^x \frac {\rd t} {\ln t} - \int_2^x \frac {\d t} {\ln t}\) Sum of Integrals on Adjacent Intervals for Integrable Functions
\(\ds \) \(=\) \(\ds \lim_{\varepsilon \mathop \to 0^+} \paren {\int_\varepsilon^{1 - \varepsilon} \frac {\rd t} {\ln t} + \int_{1 + \varepsilon}^2 \frac {\rd t} {\ln t} }\)



Sources