Evaluation of Integral using Laplace Transform/Examples/Example 1

From ProofWiki
Jump to navigation Jump to search

Examples of Use of Evaluation of Integral using Laplace Transform

$\ds \int_0^\infty \dfrac {e^{-t} - e^{-3 t} } t \rd t = \ln 3$


Proof

Let $\map f t = e^{-t} - e^{-3 t}$.

Then from Laplace Transform of Exponential:

$\laptrans {\map f t} = \dfrac 1 {s + 1} - \dfrac 1 {s + 3}$

Hence:

\(\ds \laptrans {\dfrac {e^{-t} - e^{-3 t} } t}\) \(=\) \(\ds \int_0^\infty \paren {\dfrac 1 {u + 1} - \dfrac 1 {u + 3} } \rd u\) Integral of Laplace Transform
\(\ds \leadsto \ \ \) \(\ds \int_0^\infty e^{-s t} \paren {\dfrac {e^{-t} - e^{-3 t} } t} \rd t\) \(=\) \(\ds \map \ln {\dfrac {s + 3} {s + 1} }\) Definition of Laplace Transform, Primitive of Reciprocal
\(\ds \leadsto \ \ \) \(\ds \int_0^\infty \dfrac {e^{-t} - e^{-3 t} } t \rd t\) \(=\) \(\ds \ln 3\) taking the limit as $s \to 0^+$

$\blacksquare$


Sources