# Existence of Set with Singleton Intersections with Disjoint Collection

Jump to navigation
Jump to search

## Contents

## Theorem

Let $\mathcal C$ be a set of sets all of which are pairwise disjoint.

Then:

- the axiom of choice holds.

## Proof

## Axiom of Choice

This theorem depends on the Axiom of Choice.

Because of some of its bewilderingly paradoxical implications, the Axiom of Choice is considered in some mathematical circles to be controversial.

Most mathematicians are convinced of its truth and insist that it should nowadays be generally accepted.

However, others consider its implications so counter-intuitive and nonsensical that they adopt the philosophical position that it cannot be true.

## Sources

- 1960: Paul R. Halmos:
*Naive Set Theory*... (previous) ... (next): $\S 15$: The Axiom of Choice