Expectation of Geometric Distribution/Formulation 1/Proof 3

From ProofWiki
Jump to navigation Jump to search

Theorem

$\map X \Omega = \set {0, 1, 2, \ldots} = \N$
$\map \Pr {X = k} = \paren {1 - p} p^k$


Then the expectation of $X$ is given by:

$\expect X = \dfrac p {1 - p}$


Proof

From the definition of expectation:

$\ds \expect X = \sum_{x \mathop \in \Omega_X} x \map \Pr {X = x}$

Then

\(\ds \expect X\) \(=\) \(\ds \sum_{k \mathop \in \N} k p^k \paren {1 - p}\) Definition of Geometric Distribution
\(\ds \) \(=\) \(\ds \sum_{k \mathop \ge 1} k p^k \paren {1 - p}\) as the $k = 0$ term is zero
\(\ds \) \(=\) \(\ds \sum_{k \mathop \ge 1} k p^k - k p^{k+1}\) Real Multiplication Distributes over Addition

By the Ratio Test, both $\sum_{k \mathop \ge 1} k p^k$ and $\sum_{k \mathop \ge 1} k p^{k+1}$ converge absolutely.

From Absolutely Convergent Real Series is Convergent, both series converge.

\(\ds \sum_{k \mathop \ge 1} k p^k - k p^{k+1}\) \(=\) \(\ds \sum_{k \mathop \ge 1} k p^k - \sum_{k \mathop \ge 1} k p^{k+1}\) Convergent Series can be Added Term by Term
\(\ds \) \(=\) \(\ds \sum_{k \mathop \ge 1} k p^k - \sum_{k \mathop \ge 2} \paren {k - 1} p^k\) Translation of Index Variable of Summation
\(\ds \) \(=\) \(\ds p + \sum_{k \mathop \ge 2} k p^k - \sum_{k \mathop \ge 2} \paren {k - 1} p^k\) Moving out the first term
\(\ds \) \(=\) \(\ds p + \sum_{k \mathop \ge 2} k p^k - \paren {k - 1} p^k\) Recombining the two convergent series
\(\ds \) \(=\) \(\ds p + \sum_{k \mathop \ge 2} p^k\)
\(\ds \) \(=\) \(\ds p + \frac {p^2}{1-p}\) Sum of Infinite Geometric Sequence
\(\ds \) \(=\) \(\ds \frac {p \paren {1-p} }{1-p} + \frac {p^2} {1-p}\)
\(\ds \) \(=\) \(\ds \frac p {1-p}\)

$\blacksquare$