Sum of Infinite Geometric Sequence
Theorem
Let $S$ be a standard number field, that is $\Q$, $\R$ or $\C$.
Let $z \in S$.
Let $\size z < 1$, where $\size z$ denotes:
- the absolute value of $z$, for real and rational $z$
- the complex modulus of $z$ for complex $z$.
Then $\ds \sum_{n \mathop = 0}^\infty z^n$ converges absolutely to $\dfrac 1 {1 - z}$.
Corollary 1
With the same restriction on $z \in S$:
- $\ds \sum_{n \mathop = 1}^\infty z^n = \frac z {1 - z}$
Corollary 2
With the same restriction on $z \in S$:
- $\ds \sum_{n \mathop = 0}^\infty a z^n = \frac a {1 - z}$
Corollary 3
With the same restriction on $z \in S$:
- $\ds \sum_{n \mathop = N}^\infty z^n = \frac {z^N } {1 - z}$
Proof 1
From Sum of Geometric Sequence, we have:
- $\ds s_N = \sum_{n \mathop = 0}^N z^n = \frac {1 - z^{N + 1} } {1 - z}$
We have that $\size z < 1$.
So by Sequence of Powers of Number less than One:
- $z^{N + 1} \to 0$ as $N \to \infty$
Hence $s_N \to \dfrac 1 {1 - z}$ as $N \to \infty$.
The result follows.
$\Box$
It remains to demonstrate absolute convergence:
The absolute value of $\size z$ is just $\size z$.
By assumption:
- $\size z < 1$
So $\size z$ fulfils the same condition for convergence as $z$.
Hence:
- $\ds \sum_{n \mathop = 0}^\infty \size z^n = \frac 1 {1 - \size z}$
$\blacksquare$
Proof 2
By the Chain Rule for Derivatives and the corollary to $n$th Derivative of Reciprocal of $m$th Power:
- $\dfrac {\d^n} {\d z^n} \dfrac 1 {1 - z} = \dfrac {n!} {\paren {1 - z}^{n + 1} }$
Thus the Maclaurin series expansion of $\dfrac 1 {1 - z}$ is:
- $\ds \sum_{n \mathop = 0}^\infty \frac {z^n} {n!} \dfrac {n!} {\paren {1 - 0}^{n + 1} }$
whence the result.
$\blacksquare$
Proof 3
Let $S = \ds \sum_{n \mathop = 0}^\infty z^n$.
Then:
\(\ds z S\) | \(=\) | \(\ds z \sum_{n \mathop = 0}^\infty z^n\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty z^{n + 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty z^n\) | Translation of Index Variable of Summation | |||||||||||
\(\ds \) | \(=\) | \(\ds S - z^0\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds S - 1\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds 1\) | \(=\) | \(\ds \paren {1 - z} S\) |
Hence the result.
$\blacksquare$
Proof 4
\(\ds \frac 1 {1 - z}\) | \(=\) | \(\ds \frac 1 {1 + \paren {-z} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \paren {-1}^k \paren {-z}^k\) | Power Series Expansion for $\dfrac 1 {1 + z}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \paren {-1}^k \paren {-1}^k z^k\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \paren {-1}^{2 k} z^k\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty z^k\) |
$\blacksquare$
Sources
- 1960: Walter Ledermann: Complex Numbers ... (previous) ... (next): $\S 4.4$. Power Series: Example $\text {(i)}$
- 1986: David Wells: Curious and Interesting Numbers ... (previous) ... (next): $1$
- 1992: George F. Simmons: Calculus Gems ... (previous) ... (next): Chapter $\text {B}.5$: Fermat's Calculation of $\int_0^b x^n \rd x$ for Positive Rational $n$
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $1$