Expectation of Poisson Distribution/Proof 3
Jump to navigation
Jump to search
Theorem
Let $X$ be a discrete random variable with the Poisson distribution with parameter $\lambda$.
Then the expectation of $X$ is given by:
- $\expect X = \lambda$
Proof
From Moment Generating Function of Poisson Distribution, the moment generating function of $X$, $M_X$, is given by:
- $\map {M_X} t = e^{\lambda \paren {e^t - 1} }$
By Moment in terms of Moment Generating Function:
- $\expect X = \map {M_X'} 0$
We have:
\(\ds \map {M_X'} t\) | \(=\) | \(\ds \map {\frac \d {\d t} } {e^{\lambda \paren {e^t - 1} } }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map {\frac \d {\d t} } {\lambda \paren {e^t - 1} } \frac \d {\map \d {\lambda \paren {e^t - 1} } } \paren {e^{\lambda \paren {e^t - 1} } }\) | Chain Rule for Derivatives | |||||||||||
\(\ds \) | \(=\) | \(\ds \lambda e^t e^{\lambda \paren {e^t - 1} }\) | Derivative of Exponential Function |
Setting $t = 0$ gives:
\(\ds \expect X\) | \(=\) | \(\ds \lambda e^0 e^{\lambda \paren {e^0 - 1} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lambda\) | Exponential of Zero |
$\blacksquare$