Moment Generating Function of Poisson Distribution
Jump to navigation
Jump to search
Theorem
Let $X$ be a discrete random variable with a Poisson distribution with parameter $\lambda$ for some $\lambda \in \R_{> 0}$.
Then the moment generating function $M_X$ of $X$ is given by:
- $\map {M_X} t = e^{\lambda \paren {e^t - 1} }$
Proof
From the definition of the Poisson distribution, $X$ has probability mass function:
- $\map \Pr {X = n} = \dfrac {\lambda^n e^{-\lambda} } {n!}$
From the definition of a moment generating function:
- $\ds \map {M_X} t = \expect {e^{t X} } = \sum_{n \mathop = 0}^\infty \map \Pr {X = n} e^{t n}$
So:
\(\ds \map {M_X} t\) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \frac {\lambda^n e^{-\lambda} } {n!} e^{t n}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds e^{-\lambda} \sum_{n \mathop = 0}^\infty \frac {\paren {\lambda e^t}^n} {n!}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds e^{-\lambda} e^{\lambda e^t}\) | Power Series Expansion for Exponential Function | |||||||||||
\(\ds \) | \(=\) | \(\ds e^{\lambda \paren {e^t - 1} }\) | Exponential of Sum |
$\blacksquare$
Sources
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Appendix $13$: Probability distributions
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): Appendix $15$: Probability distributions