# Fatou's Lemma for Measures/Corollary

Jump to navigation
Jump to search

## Contents

## Theorem

Let $\left({X, \Sigma, \mu}\right)$ be a measure space.

Let $\left({E_n}\right)_{n \in \N} \in \Sigma$ be a sequence of $\Sigma$-measurable sets.

Let $\mu$ be a finite measure.

Then:

- $\displaystyle \mu \left({\limsup_{n \to \infty} E_n}\right) \ge \limsup_{n \to \infty} \mu \left({E_n}\right)$

where:

- $\displaystyle \limsup_{n \to \infty} E_n$ is the limit superior of the $E_n$
- the right-hand side limit superior is taken in the extended real numbers $\overline{\R}$.

## Proof

## Source of Name

This entry was named for Pierre Joseph Louis Fatou.

## Sources

- 2005: René L. Schilling:
*Measures, Integrals and Martingales*... (previous) ... (next): $\S 9$: Problem $9 \ \text{(iii)}$