Finite Union of Regular Closed Sets is Regular Closed

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $T$ be a topological space.

Let $n \in \N$.


Suppose that:

$\forall i \in \set {1, 2, \dotsc, n}: H_i \subseteq T$

where all the $H_i$ are regular closed in $T$.

That is:

$\forall i \in \set {1, 2, \dotsc, n}: H_i = H_i^{\circ -}$

where $H_i^{\circ -}$ denotes the closure of the interior of $H_i$


Then $\ds \bigcup_{i \mathop = 1}^n H_i$ is regular closed in $T$.

That is:

$\ds \bigcup_{i \mathop = 1}^n H_i = \paren {\bigcup_{i \mathop = 1}^n H_i}^{\circ -}$


Proof

\(\ds \paren {\bigcup_{i \mathop = 1}^n H_i}^{\circ -}\) \(=\) \(\ds \paren {T \setminus \paren {T \setminus \bigcup_{i \mathop = 1}^n H_i}^-}^-\) Complement of Interior equals Closure of Complement
\(\ds \) \(=\) \(\ds \paren {T \setminus \paren {\bigcap_{i \mathop = 1}^n \paren {T \setminus H_i} }^-}^-\) De Morgan's Laws: Difference with Union
\(\ds \) \(=\) \(\ds \paren {\paren {T \setminus \bigcap_{i \mathop = 1}^n \paren {T \setminus H_i} }^\circ}^-\) Complement of Interior equals Closure of Complement
\(\ds \) \(=\) \(\ds \paren {\bigcup_{i \mathop = 1}^n \paren {T \setminus \paren {T \setminus H_i} }^\circ}^-\) De Morgan's Laws: Difference with Intersection
\(\ds \) \(=\) \(\ds \paren {\bigcup_{i \mathop = 1}^n H_i^\circ}^-\) Relative Complement of Relative Complement
\(\ds \) \(=\) \(\ds \bigcup_{i \mathop = 1}^n H_i^{\circ -}\) Closure of Finite Union equals Union of Closures
\(\ds \) \(=\) \(\ds \bigcup_{i \mathop = 1}^n H_i\) as all $H_i$ are regular closed in $T$

$\blacksquare$


Sources