Formulation 1 Rank Axioms Implies Rank Function of Matroid/Lemma 5/Proof 2

From ProofWiki
Jump to navigation Jump to search



Theorem

Let

$U \in \mathscr I$
$V \subseteq S$
$\card U < \card V$


We prove the contrapositive statement:

$\paren{\forall x \in V \setminus U : U \cup \set x \notin \mathscr I} \implies V \notin \mathscr I$


Let:

$\forall x \in V \setminus U: U \cup \set x \notin \mathscr I$

That is, by definition of $\mathscr I$:

$\forall x \in V \setminus U : \map \rho {U \cup \set x} \ne \card {U \cup \set x}$


We have:

\(\ds \card V\) \(>\) \(\ds \card U\) by hypothesis
\(\ds \) \(=\) \(\ds \map \rho U\) As $U \in \mathscr I$
\(\ds \) \(=\) \(\ds \map \rho {U \cup V}\) Lemma 3
\(\ds \) \(\ge\) \(\ds \map \rho V\) Lemma 1

Hence:

$V \notin \mathscr I$


It follows:

$M$ satisfies matroid axiom $(\text I 3)$.


Lemma 2

$\forall A \subseteq S: \map \rho A \le \card A$


Proof

We prove the contrapositive statement:

$\forall X, Y \subseteq S: Y \notin \mathscr I \land Y \subseteq X \implies X \notin \mathscr I$


Let $X, Y \subseteq S : Y \notin \mathscr I$ and $Y \subseteq X$.

Case 1: $Y = X$

Let $Y = X$.

Then $X \notin \mathscr I$.

$\Box$

Case 2: $Y \subset X$

Let $Y \subset X$.


By definition of $\mathscr I$:

$\map \rho Y \neq \size Y$

From Lemma 2:

$\map \rho Y < \size Y$


Let:

$X \setminus Y = \set{z_1, z_2, \ldots , z_k}$


We have:

\(\ds \map \rho X\) \(=\) \(\ds \map \rho {Y \cup \set{z_1, z_2, \ldots, z_k} }\)
\(\ds \) \(\le\) \(\ds \map \rho Y + k\) Repeated application of rank axiom $(\text R 2)$
\(\ds \) \(<\) \(\ds \size Y + k\) Lemma 2
\(\ds \) \(=\) \(\ds \size Y + \size {\set {z_1, z_2, \ldots, z_k} }\) Definition of Cardinality of Finite Set
\(\ds \) \(=\) \(\ds \size {Y \cup \set {z_1, z_2, \ldots, z_k} }\) Corollary of Cardinality of Set Union
\(\ds \) \(=\) \(\ds \size X\)

It follows that $X \notin \mathscr I$.

$\Box$


In either case we have:

$X \notin \mathscr I$


This proves the contrapositive statement:

$\forall X, Y \subseteq S: Y \notin \mathscr I \land Y \subseteq X \implies X \notin \mathscr I$


It follows that $\mathscr I$ satisfies matroid Axiom $(\text I 2)$.

$\blacksquare$