Formulation 1 Rank Axioms Implies Rank Function of Matroid/Lemma 5

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $S$ be a finite set.

Let $\rho : \powerset S \to \Z$ be a mapping from the power set of $S$ to the integers.


Let $\rho$ satisfy formulation 1 of the rank axioms:

\((\text R 1)\)   $:$   \(\ds \map \rho \O = 0 \)      
\((\text R 2)\)   $:$     \(\ds \forall X \in \powerset S \land y \in S:\) \(\ds \map \rho X \le \map \rho {X \cup \set y} \le \map \rho X + 1 \)      
\((\text R 3)\)   $:$     \(\ds \forall X \in \powerset S \land y, z \in S:\) \(\ds \map \rho {X \cup \set y} = \map \rho {X \cup \set z} = \map \rho X \implies \map \rho {X \cup \set y \cup \set z} = \map \rho X \)      


Let $M = \struct{S, \mathscr I}$ where:

$\mathscr I = \set{X \subseteq S : \map \rho X = \card X}$


Then $M$ satisfies matroid axiom $(\text I 2)$.


Lemma 2

$\forall A \subseteq S: \map \rho A \le \card A$


Proof 1

Let

$X \in \mathscr I$


Aiming for a contradiction, suppose

$\exists Y \subseteq X : Y \notin \mathscr I$

Let:

$Y_0 \subseteq X : \card {Y_0} = \max \set{\card Z : Z \subseteq X \land Z \notin \mathscr I}$


By definition of $\mathscr I$:

$Y_0 \notin \mathscr I \leadsto \map \rho {Y_0} \ne \card {Y_0}$

From Lemma 2:

$\map \rho {Y_0} < \card {Y_0}$


As $X \in \mathscr I$ then:

$Y_0 \ne X$

Hence:

$Y_0$ is a proper subset of $X$

From Set Difference with Proper Subset:

$X \setminus Y_0 \ne \O$


Let $y \in X \setminus Y_0$.


We have:

\(\ds \card {Y_0} + 1\) \(=\) \(\ds \card {Y_0 \cup \set y}\) Corollary of Cardinality of Set Union
\(\ds \) \(=\) \(\ds \map \rho {Y_0 \cup \set y}\) As $\card {Y_0} = \max \set{\card Z : Z \subseteq X \land Z \notin \mathscr I}$
\(\ds \) \(\le\) \(\ds \map \rho {Y_0} + 1\) Rank axiom $(\text R 2)$
\(\ds \) \(<\) \(\ds \card {Y_0} + 1\) As $\map \rho {Y_0} < \card {Y_0}$

This is a contradiction.


So:

$\forall Y \subseteq X : Y \in \mathscr I$

Hence:

$M$ satisfies matroid axiom $(\text I 2)$.

$\blacksquare$

Proof 2

We prove the contrapositive statement:

$\forall X, Y \subseteq S: Y \notin \mathscr I \land Y \subseteq X \implies X \notin \mathscr I$


Let $X, Y \subseteq S : Y \notin \mathscr I$ and $Y \subseteq X$.

Case 1: $Y = X$

Let $Y = X$.

Then $X \notin \mathscr I$.

$\Box$

Case 2: $Y \subset X$

Let $Y \subset X$.


By definition of $\mathscr I$:

$\map \rho Y \neq \size Y$

From Lemma 2:

$\map \rho Y < \size Y$


Let:

$X \setminus Y = \set{z_1, z_2, \ldots , z_k}$


We have:

\(\ds \map \rho X\) \(=\) \(\ds \map \rho {Y \cup \set{z_1, z_2, \ldots, z_k} }\)
\(\ds \) \(\le\) \(\ds \map \rho Y + k\) Repeated application of rank axiom $(\text R 2)$
\(\ds \) \(<\) \(\ds \size Y + k\) Lemma 2
\(\ds \) \(=\) \(\ds \size Y + \size {\set {z_1, z_2, \ldots, z_k} }\) Definition of Cardinality of Finite Set
\(\ds \) \(=\) \(\ds \size {Y \cup \set {z_1, z_2, \ldots, z_k} }\) Corollary of Cardinality of Set Union
\(\ds \) \(=\) \(\ds \size X\)

It follows that $X \notin \mathscr I$.

$\Box$


In either case we have:

$X \notin \mathscr I$


This proves the contrapositive statement:

$\forall X, Y \subseteq S: Y \notin \mathscr I \land Y \subseteq X \implies X \notin \mathscr I$


It follows that $\mathscr I$ satisfies matroid Axiom $(\text I 2)$.

$\blacksquare$