Gauss-Ostrogradsky Theorem/Formal Proof
![]() | This article needs to be linked to other articles. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding these links. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{MissingLinks}} from the code. |
Theorem
Let $U$ be a subset of $\R^3$ which is compact and has a piecewise smooth boundary $\partial U$.
Let $\mathbf V: \R^3 \to \R^3$ be a smooth vector field defined on a neighborhood of $U$.
Then:
- $\ds \iiint \limits_U \paren {\nabla \cdot \mathbf V} \rd v = \iint \limits_{\partial U} \mathbf V \cdot \mathbf n \rd S$
where $\mathbf n$ is the unit normal to $\partial U$, directed outwards.
Proof
It suffices to prove the theorem for rectangular prisms.
The Riemann-sum nature of the triple integral then guarantees the theorem for arbitrary regions.
![]() | This article, or a section of it, needs explaining. In particular: Link to a result demonstrating the above, or explain it better here You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by explaining it. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Explain}} from the code. |
Let:
- $R = \set {\tuple {x, y, z}: a_1 \le x \le a_2, b_1 \le y \le b_2, c_1 \le z \le c_2}$
and let $S = \partial R$, oriented outward.
Then:
- $S = A_1 \cup A_2 \cup A_3 \cup A_4 \cup A_5 \cup A_6$
where:
- $A_1, A_2$ are those sides perpendicular to the $x$-axis
- $A_3, A_4$ are those sides perpendicular to the $y$ axis
and
- $A_5, A_6$ are those sides perpendicular to the $z$-axis
and in all cases the lower subscript indicates a side closer to the origin.
![]() | This article, or a section of it, needs explaining. In particular: A diagram here is required You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by explaining it. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Explain}} from the code. |
Let:
- $\mathbf V = M \mathbf i + N \mathbf j + P \mathbf k$
where $M, N, P: \R^3 \to \R$.
Then:
\(\ds \iiint_R \nabla \cdot \mathbf V \rd v\) | \(=\) | \(\ds \iiint_R \paren {\frac {\partial M} {\partial x} + \frac {\partial N} {\partial y} + \frac {\partial P} {\partial z} } \rd x \rd y \rd z\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \iiint_R \frac {\partial M} {\partial x} \rd x \rd y \rd z + \iiint_M \frac {\partial N} {\partial y} \rd x \rd y \rd z + \iiint_M \frac {\partial P} {\partial z} \rd x \rd y \rd z\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int_{c_1}^{c_2} \int_{b_1}^{b_2} \paren {\map M {a_2, y, z} - \map M {a_1, y, z} } \rd y \rd z\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \int_{c_1}^{c_2} \int_{a_1}^{a_2} \paren {\map N {x, b_2, z} - \map N {x, b_1, z} } \rd x \rd z\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \int_{b_1}^{b_2} \int_{a_1}^{a_2} \paren {\map P {x, y, c_2} - \map P {x, y, c_1} } \rd x \rd y\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \iint_{A_2} M \rd y \rd z - \iint_{A_1} M \rd y \rd z\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \iint_{A_4} N \rd x \rd z - \iint_{A_3} N \rd x \rd z\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \iint_{A_6} P \rd x \rd y - \iint_{A_5} P \rd x \rd y\) |
We turn now to examine $\mathbf n$:
\(\ds \mathbf n\) | \(=\) | \(\ds \tuple {-1, 0, 0}\) | on $A_1$ | |||||||||||
\(\ds \mathbf n\) | \(=\) | \(\ds \tuple {1, 0, 0}\) | on $A_2$ | |||||||||||
\(\ds \mathbf n\) | \(=\) | \(\ds \tuple {0, -1, 0}\) | on $A_3$ | |||||||||||
\(\ds \mathbf n\) | \(=\) | \(\ds \tuple {0, 1, 0}\) | on $A_4$ | |||||||||||
\(\ds \mathbf n\) | \(=\) | \(\ds \tuple {0, 0, -1}\) | on $A_5$ | |||||||||||
\(\ds \mathbf n\) | \(=\) | \(\ds \tuple {0, 0, 1}\) | on $A_6$ |
Hence:
\(\ds \mathbf V \cdot \mathbf n\) | \(=\) | \(\ds -M\) | on $A_1$ | |||||||||||
\(\ds \mathbf V \cdot \mathbf n\) | \(=\) | \(\ds M\) | on $A_2$ | |||||||||||
\(\ds \mathbf V \cdot \mathbf n\) | \(=\) | \(\ds -N\) | on $A_3$ | |||||||||||
\(\ds \mathbf V \cdot \mathbf n\) | \(=\) | \(\ds N\) | on $A_4$ | |||||||||||
\(\ds \mathbf V \cdot \mathbf n\) | \(=\) | \(\ds -P\) | on $A_5$ | |||||||||||
\(\ds \mathbf V \cdot \mathbf n\) | \(=\) | \(\ds P\) | on $A_6$ |
We also have:
\(\ds \d S\) | \(=\) | \(\ds \d y \rd z\) | on $A_1$ and $A_2$ | |||||||||||
\(\ds \d S\) | \(=\) | \(\ds \d x \rd z\) | on $A_3$ and $A_4$ | |||||||||||
\(\ds \d S\) | \(=\) | \(\ds \d x \rd y\) | on $A_5$ and $A_6$ |
where $\d S$ is the area element.
This is true because each side is perfectly flat, and constant with respect to one coordinate.
Hence:
\(\ds \iint_{A_2} \mathbf V \cdot \mathbf n \rd S\) | \(=\) | \(\ds \iint_{A_2} M \rd y \rd z\) |
and in general:
\(\ds \sum_{i \mathop = 1}^6 \iint_{A_i} \mathbf V \cdot \mathbf n \rd S\) | \(=\) | \(\ds \iint_{A_2} M \rd y \rd z - \iint_{A_1} M \rd y \rd z + \iint_{A_4} N \rd x \rd z - \iint_{A_3} N \rd x \rd z + \iint_{A_6} P \rd x \rd y - \iint_{A_5} P \rd x \rd y\) |
Hence the result:
- $\ds \iiint_R \nabla \cdot \mathbf V \rd v = \iint_{\partial R} \mathbf V \cdot \mathbf n \rd S$
$\blacksquare$
Also known as
The Gauss-Ostrogradsky Theorem is also known as:
- the Divergence Theorem
- Gauss's Theorem
- Gauss's Divergence Theorem or Gauss's Theorem of Divergence
- Ostrogradsky's Theorem
- the Ostrogradsky-Gauss Theorem.
Also see
Source of Name
This entry was named for Carl Friedrich Gauss and Mikhail Vasilyevich Ostrogradsky.