Group of Units Ring of Integers Modulo p^2 is Cyclic
![]() | This article needs to be tidied. In particular: including grammar Please fix formatting and $\LaTeX$ errors and inconsistencies. It may also need to be brought up to our standard house style. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Tidy}} from the code. |
![]() | This article needs to be linked to other articles. In particular: fair way to go You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding these links. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{MissingLinks}} from the code. |
Theorem
Let $p$ be a prime.
Let $\struct {\Z / p^2 \Z, +, \times}$ be the ring of integers modulo $p^2$.
Let $U = \struct {\paren {\Z / p^2 \Z}^\times, \times}$ denote the group of units of $\struct {\Z / p^2 \Z, +, \times}$.
Then $U$ is cyclic.
Proof
The case $p = 2$ follows from Isomorphism between Group of Units Ring of Integers Modulo $2^n$ and $C_2 \times C_{2^{n - 2} }$.
Next, we suppose $p > 2$.
From Ring of Integers Modulo Prime is Field and Group of Units of Finite Field is Cyclic, $\paren {\Z / p \Z}^\times$ is cyclic.
Let $\eqclass g p$ be a generator of $\paren {\Z / p \Z}^\times$ for some $g \in \Z$.
Let $d$ be the order of $\eqclass g {p^2}$ in $\paren {\Z / p^2 \Z}^\times$.
Then:
- $g^d \equiv 1 \pmod {p^2}$
so:
- $g^d \equiv 1 \pmod p$
The order of $\eqclass g p$ in $\paren {\Z / p \Z}^\times$ is:
- $\order {\paren {\Z / p \Z}^\times} = p - 1$
We get:
\(\text {(1)}: \quad\) | \(\ds p - 1\) | \(\divides\) | \(\ds d\) |
\(\text {(2)}: \quad\) | \(\ds d\) | \(\divides\) | \(\ds \order {\paren {\Z / p^2 \Z}^\times}\) | \(\ds = p \paren {p - 1}\) |
We need to prove that:
- $\eqclass g {p^2}$ generates $\paren {\Z / p^2 \Z}^\times \implies \paren {\Z / p^2 \Z}^\times$ is cyclic.
If not, then:
\(\text {(3)}: \quad\) | \(\ds d\) | \(<\) | \(\ds \order {\paren {\Z / p^2 \Z}^\times}\) | \(\ds = p \paren {p - 1}\) |
By $(1)$, $(2)$ and $(3)$:
- $d = p - 1$
so:
\(\text {(4)}: \quad\) | \(\ds g^{p - 1}\) | \(\equiv\) | \(\ds 1\) | \(\ds \pmod {p^2}\) |
Consider:
- $g' = g + p$
Let $d'$ be the order of $\eqclass {g'} {p^2}$ in $\paren {\Z / p^2 \Z}^\times$.
Then:
- ${g'}^{d'} \equiv 1 \pmod {p^2}$
so
- ${g'}^{d'} \equiv 1 \pmod p$
Note that:
- $\eqclass {g'} p = \eqclass g p$.
Then the order of $\eqclass {g'} p$ in $\paren {\Z / p \Z}^\times$ is:
- $\order {\paren {\Z / p \Z}^\times} = p - 1$
We get
\(\text {(5)}: \quad\) | \(\ds p - 1\) | \(\divides\) | \(\ds d'\) |
\(\text {(6)}: \quad\) | \(\ds d'\) | \(\divides\) | \(\ds \order {\paren {\Z / p^2 \Z}^\times}\) | \(\ds = p \paren {p - 1}\) |
By Binomial Theorem for Integral Index:
\(\ds {g'}^{p-1}\) | \(=\) | \(\ds \paren {g + p}^{p - 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds g^{p - 1} + \paren {p - 1} p g^{p - 2} + \underbrace {\sum_{k \mathop \ge 2} \binom {p - 1} k p^k g^{p - 1 - k} }_{\text{divisible by } p^2}\) | ||||||||||||
\(\ds \) | \(\equiv\) | \(\ds g^{p - 1} + p \paren {p - 1} g^{p - 2}\) | \(\ds \pmod {p^2}\) | |||||||||||
\(\ds \) | \(\equiv\) | \(\ds 1 + p \paren {p - 1} g^{p - 2}\) | \(\ds \pmod {p^2}\) | from $(4)$ |
so:
- ${g'}^{p - 1} \not \equiv 1 \pmod {p^2}$
Therefore:
\(\text {(7)}: \quad\) | \(\ds d'\) | \(\ne\) | \(\ds p - 1\) |
By $(5)$, $(6)$ and $(7)$:
- $d' = p \paren {p - 1}$
so:
- $\eqclass {g'} {p^2}$ generates $\paren {\Z / p^2 \Z}^\times \implies \paren {\Z / p^2 \Z}^\times$ is cyclic.
$\blacksquare$