Hero's Method/Lemma 2

From ProofWiki
Jump to navigation Jump to search

Lemma for Hero's Method

Let $a \in \R$ be a real number such that $a > 0$.

Let $x_1 \in \R$ be a real number such that $x_1 > 0$.

Let $\sequence {x_n}$ be the sequence in $\R$ defined recursively by:

$\forall n \in \N_{>0}: x_{n + 1} = \dfrac {x_n + \dfrac a {x_n} } 2$


Then:

$\forall n \ge 2: x_n \ge \sqrt a$


Proof

Lemma 1

$\forall n \in \N_{>0}: x_n > 0$

$\Box$


We have:

\(\ds x_{n + 1}\) \(=\) \(\ds \frac {x_n + \dfrac a {x_n} } 2\)
\(\ds \leadstoandfrom \ \ \) \(\ds 2 x_n x_{n + 1}\) \(=\) \(\ds x_n^2 + a\)
\(\ds \leadstoandfrom \ \ \) \(\ds x_n^2 - 2 x_n x_{n + 1} + a\) \(=\) \(\ds 0\)

This is a quadratic equation in $x_n$.

We know that this equation must have a real solution with respect to $x_n$, because $x_n$ has been explicitly constructed by the iterative process.


Thus its discriminant is $b^2 - 4 a c \ge 0$, where:

$a = 1$
$b = -2 x_{n + 1}$
$c = a$

Thus $x_{n + 1}^2 \ge a$.


From Lemma 1:

$x_{n + 1} > 0$

It follows that:

$\forall n \ge 1: x_{n + 1} \ge \sqrt a$ for $n \ge 1$

Thus:

$\forall n \ge 2: x_n \ge \sqrt a$ for $n \ge 2$

$\blacksquare$


Sources