Hyperbolic Cotangent of Complex Number/Formulation 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a$ and $b$ be real numbers.

Let $i$ be the imaginary unit.


Then:

$\coth \paren {a + b i} = \dfrac {\cosh a \cos b + i \sinh a \sin b} {\sinh a \cos b + i \cosh a \sin b}$

where:

$\coth$ denotes the hyperbolic cotangent function
$\sin$ denotes the real sine function
$\cos$ denotes the real cosine function
$\sinh$ denotes the hyperbolic sine function
$\cosh$ denotes the hyperbolic cosine function.


Proof

\(\ds \coth \paren {a + b i}\) \(=\) \(\ds \frac {\cosh \paren {a + b i} } {\sinh \paren {a + b i} }\) Definition of Hyperbolic Cotangent
\(\ds \) \(=\) \(\ds \dfrac {\cosh a \cos b + i \sinh a \sin b} {\sinh a \cos b + i \cosh a \sin b}\) Hyperbolic Sine of Complex Number and Hyperbolic Cosine of Complex Number

$\blacksquare$


Also see