Hyperbolic Tangent of Complex Number/Formulation 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a$ and $b$ be real numbers.

Let $i$ be the imaginary unit.


Then:

$\tanh \paren {a + b i} = \dfrac {\sinh a \cos b + i \cosh a \sin b} {\cosh a \cos b + i \sinh a \sin b}$

where:

$\tanh$ denotes the hyperbolic tangent function
$\sin$ denotes the real sine function
$\cos$ denotes the real cosine function
$\sinh$ denotes the hyperbolic sine function
$\cosh$ denotes the hyperbolic cosine function.


Proof

\(\ds \tanh \paren {a + b i}\) \(=\) \(\ds \frac {\sinh \paren {a + b i} } {\cosh \paren {a + b i} }\) Definition of Hyperbolic Tangent
\(\ds \) \(=\) \(\ds \dfrac {\sinh a \cos b + i \cosh a \sin b} {\cosh a \cos b + i \sinh a \sin b}\) Hyperbolic Sine of Complex Number and Hyperbolic Cosine of Complex Number

$\blacksquare$


Also see