Hyperbolic Tangent of Complex Number/Formulation 1
Jump to navigation
Jump to search
Theorem
Let $a$ and $b$ be real numbers.
Let $i$ be the imaginary unit.
Then:
- $\tanh \paren {a + b i} = \dfrac {\sinh a \cos b + i \cosh a \sin b} {\cosh a \cos b + i \sinh a \sin b}$
where:
- $\tanh$ denotes the hyperbolic tangent function
- $\sin$ denotes the real sine function
- $\cos$ denotes the real cosine function
- $\sinh$ denotes the hyperbolic sine function
- $\cosh$ denotes the hyperbolic cosine function.
Proof
\(\ds \tanh \paren {a + b i}\) | \(=\) | \(\ds \frac {\sinh \paren {a + b i} } {\cosh \paren {a + b i} }\) | Definition of Hyperbolic Tangent | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\sinh a \cos b + i \cosh a \sin b} {\cosh a \cos b + i \sinh a \sin b}\) | Hyperbolic Sine of Complex Number and Hyperbolic Cosine of Complex Number |
$\blacksquare$