Identity Functor is Left Identity
Jump to navigation
Jump to search
Theorem
Let $\mathbf C$ and $\mathbf D$ be metacategories.
Let $F: \mathbf C \to \mathbf D$ be a functor, and let $\operatorname{id}_{\mathbf D}$ be the identity functor on $\mathbf D$.
Then the composite functor $\operatorname{id}_{\mathbf D} F$ satisfies:
- $\operatorname{id}_{\mathbf D} F = F$
Proof
We have, for all objects $C$ of $\mathbf C$:
- $\operatorname{id}_{\mathbf D}F C = \operatorname{id}_{\mathbf D} \left({F C}\right) = F C$
by definition of composition of functors and of identity functor.
Similarly, we have, for a morphism $f$ of $\mathbf C$:
- $\operatorname{id}_{\mathbf D}F f = \operatorname{id}_{\mathbf D} \left({F f}\right) = F f$
Hence the result.
$\blacksquare$