# Induced Group Product is Homomorphism iff Commutative

## Theorem

Let $\struct {G, \circ}$ be a group.

Let $H_1, H_2$ be subgroups of $G$.

Let $\phi: H_1 \times H_2 \to G$ be defined such that:

$\forall \tuple {h_1, h_2} \in H_1 \times H_2: \map \phi {h_1, h_2} = h_1 \circ h_2$

Then $\phi$ is a homomorphism if and only if every element of $H_1$ commutes with every element of $H_2$.

### Corollary

Let $\struct {G, \circ}$ be a group.

Let $\phi: G \times G \to G$ be defined such that:

$\forall a, b \in G: \map \phi {a, b} = a \circ b$

Then $\phi$ is a homomorphism if and only if $G$ is abelian.

## Proof

We have $\tuple {h_1, h_2} \circ \tuple {k_1, k_2} = \tuple {h_1 \circ k_1, h_2 \circ k_2}$ by definition of group direct product.

### Necessary Condition

Let $\phi$ be a homomorphism.

Then:

 $\ds \map \phi {\tuple {h_1, h_2} \circ \tuple {k_1, k_2} }$ $=$ $\ds \map \phi {h_1, h_2} \circ \map \phi {k_1, k_2}$ $\ds \leadsto \ \$ $\ds \map \phi {h_1 \circ k_1, h_2 \circ k_2}$ $=$ $\ds \tuple {h_1 \circ h_2} \circ \tuple {k_1 \circ k_2}$ $\ds \leadsto \ \$ $\ds h_1 \circ k_1 \circ h_2 \circ k_2$ $=$ $\ds h_1 \circ h_2 \circ k_1 \circ k_2$ $\ds \leadsto \ \$ $\ds k_1 \circ h_2$ $=$ $\ds h_2 \circ k_1$

This follows whatever $k_1$ and $h_2$ are.

So in order for $\phi$ to be a homomorphism, every element of $H_1$ must commute with every element of $H_2$.

$\Box$

### Sufficient Condition

Let every element of $H_1$ commute with every element of $H_2$.

Let $\tuple {h_1, h_2}, \tuple {k_1, k_2} \in H_1 \times H_2$.

Then:

 $\ds \map \phi {\tuple {h_1, h_2} \circ \tuple {k_1, k_2} }$ $=$ $\ds \map \phi {h_1 \circ k_1, h_2 \circ k_2}$ $\ds$ $=$ $\ds h_1 \circ k_1 \circ h_2 \circ k_2$ $\ds$ $=$ $\ds h_1 \circ h_2 \circ k_1 \circ k_2$ $k_1$ commutes with $h_2$ $\ds$ $=$ $\ds \map \phi {h_1, h_2} \circ \map \phi {k_1, k_2}$

Thus $\phi$ is shown to be a homomorphism.

$\blacksquare$