Definition:Group Direct Product
Definition
Let $\struct {G, \circ_1}$ and $\struct {H, \circ_2}$ be groups.
Let $G \times H: \set {\tuple {g, h}: g \in G, h \in H}$ be their cartesian product.
The (external) direct product of $\struct {G, \circ_1}$ and $\struct {H, \circ_2}$ is the group $\struct {G \times H, \circ}$ where the operation $\circ$ is defined as:
- $\tuple {g_1, h_1} \circ \tuple {g_2, h_2} = \tuple {g_1 \circ_1 g_2, h_1 \circ_2 h_2}$
This is usually referred to as the group direct product of $G$ and $H$.
Finite Product
Let $\struct {G_1, \circ_1}, \struct {G_2, \circ_2}, \ldots, \struct {G_n, \circ_n}$ be groups.
Let $\ds G = \prod_{k \mathop = 1}^n G_k$ be their cartesian product.
Let $\circ$ be the operation defined on $G$ as:
- $\circ := \tuple {g_1, g_2, \ldots, g_n} \circ \tuple {h_1, h_2, \ldots, h_n} = \tuple {g_1 \circ_1 h_1, g_2 \circ_2 h_2, \ldots, g_n \circ_n h_n}$
for all ordered $n$-tuples in $G$.
The group $\struct {G, \circ}$ is called the (external) direct product of $\struct {G_1, \circ_1}, \struct {G_2, \circ_2}, \ldots, \struct {G_n, \circ_n}$.
General Definition
Let $\family {\struct {G_i, \circ_i} }_{i \mathop \in I}$ be a family of groups.
Let $\ds G = \prod_{i \mathop \in I} G_i$ be their cartesian product.
Let $\circ$ be the operation defined on $G$ as:
- $\circ := \family {g_i}_{i \mathop \in I} \circ \family {h_i}_{i \mathop \in I} = \family {g_i \circ_i h_i}_{i \mathop \in I}$
for all sequences in $G$.
The group $\struct {G, \circ}$ is called the (external) direct product of $\family {\struct {G_i, \circ_i} }_{i \mathop \in I}$.
Examples
Cyclic Group $C_2$ by Itself
The direct product of $C_2$, the cyclic group of order $2$, with itself is as follows.
Let us represent $C_2$ as the group $\struct {\set {1, -1}, \times}$:
- $\begin {array} {r|rr} \struct {\set {1, -1} , \times} & 1 & -1 \\ \hline 1 & 1 & -1 \\ -1 & -1 & 1 \\ \end{array}$
Then the Cayley table for $C_2 \times C_2$ can be portrayed as:
- $\begin {array} {c|cccc} C_2 \times C_2 & \tuple { 1, 1} & \tuple { 1, -1} & \tuple {-1, 1} & \tuple {-1, -1} \\ \hline \tuple { 1, 1} & \tuple { 1, 1} & \tuple { 1, -1} & \tuple {-1, 1} & \tuple {-1, -1} \\ \tuple { 1, -1} & \tuple { 1, -1} & \tuple { 1, 1} & \tuple {-1, -1} & \tuple {-1, 1} \\ \tuple {-1, 1} & \tuple {-1, 1} & \tuple {-1, -1} & \tuple { 1, 1} & \tuple { 1, -1} \\ \tuple {-1, -1} & \tuple {-1, -1} & \tuple {-1, 1} & \tuple { 1, -1} & \tuple { 1, 1} \\ \end{array}$
Cyclic Group $C_2$ by $C_3$
The direct product of $C_2$, the cyclic group of order $2$, with $C_3$, the cyclic group of order $3$, is as follows.
Let us represent $C_2$ as the group $\struct {\Z_2, +_2}$:
- $\begin {array} {r|rr} +_2 & \eqclass 0 2 & \eqclass 1 2 \\ \hline \eqclass 0 2 & \eqclass 0 2 & \eqclass 1 2 \\ \eqclass 1 2 & \eqclass 1 2 & \eqclass 0 2 \\ \end{array}$
and $C_3$ as the group $\struct {\Z_3, +_3}$:
- $\begin {array} {r|rrr} +_3 & \eqclass 0 3 & \eqclass 1 3 & \eqclass 2 3 \\ \hline \eqclass 0 3 & \eqclass 0 3 & \eqclass 1 3 & \eqclass 2 3 \\ \eqclass 1 3 & \eqclass 1 3 & \eqclass 2 3 & \eqclass 0 3 \\ \eqclass 2 3 & \eqclass 2 3 & \eqclass 0 3 & \eqclass 1 3 \\ \end{array}$
Then the Cayley table for $\struct{C_2 \times C_3, +_6}$ can be portrayed as:
- $\begin {array} {r|rrrrrr} +_6 & \tuple {\eqclass 0 2, \eqclass 0 3} & \tuple {\eqclass 0 2, \eqclass 1 3} & \tuple {\eqclass 0 2, \eqclass 2 3} & \tuple {\eqclass 1 2, \eqclass 0 3} & \tuple {\eqclass 1 2, \eqclass 1 3} & \tuple {\eqclass 1 2, \eqclass 2 3} \\ \hline \tuple {\eqclass 0 2, \eqclass 0 3} & \tuple {\eqclass 0 2, \eqclass 0 3} & \tuple {\eqclass 0 2, \eqclass 1 3} & \tuple {\eqclass 0 2, \eqclass 2 3} & \tuple {\eqclass 1 2, \eqclass 0 3} & \tuple {\eqclass 1 2, \eqclass 1 3} & \tuple {\eqclass 1 2, \eqclass 2 3} \\ \tuple {\eqclass 0 2, \eqclass 1 3} & \tuple {\eqclass 0 2, \eqclass 1 3} & \tuple {\eqclass 0 2, \eqclass 2 3} & \tuple {\eqclass 0 2, \eqclass 0 3} & \tuple {\eqclass 1 2, \eqclass 1 3} & \tuple {\eqclass 1 2, \eqclass 2 3} & \tuple {\eqclass 1 2, \eqclass 0 3} \\ \tuple {\eqclass 0 2, \eqclass 2 3} & \tuple {\eqclass 0 2, \eqclass 2 3} & \tuple {\eqclass 0 2, \eqclass 0 3} & \tuple {\eqclass 0 2, \eqclass 1 3} & \tuple {\eqclass 1 2, \eqclass 2 3} & \tuple {\eqclass 1 2, \eqclass 0 3} & \tuple {\eqclass 1 2, \eqclass 1 3} \\ \tuple {\eqclass 1 2, \eqclass 0 3} & \tuple {\eqclass 1 2, \eqclass 0 3} & \tuple {\eqclass 1 2, \eqclass 1 3} & \tuple {\eqclass 1 2, \eqclass 2 3} & \tuple {\eqclass 0 2, \eqclass 0 3} & \tuple {\eqclass 0 2, \eqclass 1 3} & \tuple {\eqclass 0 2, \eqclass 2 3} \\ \tuple {\eqclass 1 2, \eqclass 1 3} & \tuple {\eqclass 1 2, \eqclass 1 3} & \tuple {\eqclass 1 2, \eqclass 2 3} & \tuple {\eqclass 1 2, \eqclass 0 3} & \tuple {\eqclass 0 2, \eqclass 1 3} & \tuple {\eqclass 0 2, \eqclass 2 3} & \tuple {\eqclass 0 2, \eqclass 0 3} \\ \tuple {\eqclass 1 2, \eqclass 2 3} & \tuple {\eqclass 1 2, \eqclass 2 3} & \tuple {\eqclass 1 2, \eqclass 0 3} & \tuple {\eqclass 1 2, \eqclass 1 3} & \tuple {\eqclass 0 2, \eqclass 2 3} & \tuple {\eqclass 0 2, \eqclass 0 3} & \tuple {\eqclass 0 2, \eqclass 1 3} \\ \end{array}$
Cyclic Group $C_3$ by Itself
The direct product of $C_3$, the cyclic group of order $3$, with itself is as follows.
Let us represent $C_3$ as the group $\struct {\Z_3, +_3}$:
- $\begin {array} {r|rrr} +_3 & \eqclass 0 3 & \eqclass 1 3 & \eqclass 2 3 \\ \hline \eqclass 0 3 & \eqclass 0 3 & \eqclass 1 3 & \eqclass 2 3 \\ \eqclass 1 3 & \eqclass 1 3 & \eqclass 2 3 & \eqclass 0 3 \\ \eqclass 2 3 & \eqclass 2 3 & \eqclass 0 3 & \eqclass 1 3 \\ \end{array}$
Then the Cayley table for $\struct{C_3 \times C_3, +_9}$ can be portrayed as:
- $\begin {array} {r|rrrrrrrrr} +_{3, 3} & \tuple {\eqclass 0 3, \eqclass 0 3} & \tuple {\eqclass 0 3, \eqclass 1 3} & \tuple {\eqclass 0 3, \eqclass 2 3} & \tuple {\eqclass 1 3, \eqclass 0 3} & \tuple {\eqclass 1 3, \eqclass 1 3} & \tuple {\eqclass 1 3, \eqclass 2 3} & \tuple {\eqclass 2 3, \eqclass 0 3} & \tuple {\eqclass 2 3, \eqclass 1 3} & \tuple {\eqclass 2 3, \eqclass 2 3} \\ \hline \tuple {\eqclass 0 3, \eqclass 0 3} & \tuple {\eqclass 0 3, \eqclass 0 3} & \tuple {\eqclass 0 3, \eqclass 1 3} & \tuple {\eqclass 0 3, \eqclass 2 3} & \tuple {\eqclass 1 3, \eqclass 0 3} & \tuple {\eqclass 1 3, \eqclass 1 3} & \tuple {\eqclass 1 3, \eqclass 2 3} & \tuple {\eqclass 2 3, \eqclass 0 3} & \tuple {\eqclass 2 3, \eqclass 1 3} & \tuple {\eqclass 2 3, \eqclass 2 3} \\ \tuple {\eqclass 0 3, \eqclass 1 3} & \tuple {\eqclass 0 3, \eqclass 1 3} & \tuple {\eqclass 0 3, \eqclass 2 3} & \tuple {\eqclass 0 3, \eqclass 0 3} & \tuple {\eqclass 1 3, \eqclass 1 3} & \tuple {\eqclass 1 3, \eqclass 2 3} & \tuple {\eqclass 1 3, \eqclass 0 3} & \tuple {\eqclass 2 3, \eqclass 1 3} & \tuple {\eqclass 2 3, \eqclass 2 3} & \tuple {\eqclass 2 3, \eqclass 0 3} \\ \tuple {\eqclass 0 3, \eqclass 2 3} & \tuple {\eqclass 0 3, \eqclass 2 3} & \tuple {\eqclass 0 3, \eqclass 0 3} & \tuple {\eqclass 0 3, \eqclass 1 3} & \tuple {\eqclass 1 3, \eqclass 2 3} & \tuple {\eqclass 1 3, \eqclass 0 3} & \tuple {\eqclass 1 3, \eqclass 1 3} & \tuple {\eqclass 2 3, \eqclass 2 3} & \tuple {\eqclass 2 3, \eqclass 0 3} & \tuple {\eqclass 2 3, \eqclass 1 3} \\ \tuple {\eqclass 1 3, \eqclass 0 3} & \tuple {\eqclass 1 3, \eqclass 3 3} & \tuple {\eqclass 1 3, \eqclass 1 3} & \tuple {\eqclass 1 3, \eqclass 2 3} & \tuple {\eqclass 2 3, \eqclass 0 3} & \tuple {\eqclass 2 3, \eqclass 1 3} & \tuple {\eqclass 2 3, \eqclass 2 3} & \tuple {\eqclass 0 3, \eqclass 0 3} & \tuple {\eqclass 0 3, \eqclass 1 3} & \tuple {\eqclass 0 3, \eqclass 2 3} \\ \tuple {\eqclass 1 3, \eqclass 1 3} & \tuple {\eqclass 1 3, \eqclass 1 3} & \tuple {\eqclass 1 3, \eqclass 2 3} & \tuple {\eqclass 1 3, \eqclass 0 3} & \tuple {\eqclass 2 3, \eqclass 1 3} & \tuple {\eqclass 2 3, \eqclass 2 3} & \tuple {\eqclass 2 3, \eqclass 0 3} & \tuple {\eqclass 0 3, \eqclass 1 3} & \tuple {\eqclass 0 3, \eqclass 2 3} & \tuple {\eqclass 0 3, \eqclass 0 3} \\ \tuple {\eqclass 1 3, \eqclass 2 3} & \tuple {\eqclass 1 3, \eqclass 2 3} & \tuple {\eqclass 1 3, \eqclass 0 3} & \tuple {\eqclass 1 3, \eqclass 1 3} & \tuple {\eqclass 2 3, \eqclass 2 3} & \tuple {\eqclass 2 3, \eqclass 0 3} & \tuple {\eqclass 2 3, \eqclass 1 3} & \tuple {\eqclass 0 3, \eqclass 2 3} & \tuple {\eqclass 0 3, \eqclass 0 3} & \tuple {\eqclass 0 3, \eqclass 1 3} \\ \tuple {\eqclass 2 3, \eqclass 0 3} & \tuple {\eqclass 2 3, \eqclass 0 3} & \tuple {\eqclass 2 3, \eqclass 1 3} & \tuple {\eqclass 2 3, \eqclass 2 3} & \tuple {\eqclass 0 3, \eqclass 0 3} & \tuple {\eqclass 0 3, \eqclass 1 3} & \tuple {\eqclass 0 3, \eqclass 2 3} & \tuple {\eqclass 1 3, \eqclass 0 3} & \tuple {\eqclass 1 3, \eqclass 1 3} & \tuple {\eqclass 1 3, \eqclass 2 3} \\ \tuple {\eqclass 2 3, \eqclass 1 3} & \tuple {\eqclass 2 3, \eqclass 1 3} & \tuple {\eqclass 2 3, \eqclass 2 3} & \tuple {\eqclass 2 3, \eqclass 0 3} & \tuple {\eqclass 0 3, \eqclass 1 3} & \tuple {\eqclass 0 3, \eqclass 2 3} & \tuple {\eqclass 0 3, \eqclass 0 3} & \tuple {\eqclass 1 3, \eqclass 1 3} & \tuple {\eqclass 1 3, \eqclass 2 3} & \tuple {\eqclass 1 3, \eqclass 0 3} \\ \tuple {\eqclass 2 3, \eqclass 2 3} & \tuple {\eqclass 2 3, \eqclass 2 3} & \tuple {\eqclass 2 3, \eqclass 0 3} & \tuple {\eqclass 2 3, \eqclass 1 3} & \tuple {\eqclass 0 3, \eqclass 2 3} & \tuple {\eqclass 0 3, \eqclass 0 3} & \tuple {\eqclass 0 3, \eqclass 1 3} & \tuple {\eqclass 1 3, \eqclass 2 3} & \tuple {\eqclass 1 3, \eqclass 0 3} & \tuple {\eqclass 1 3, \eqclass 1 3} \\ \end{array}$
Also known as
The group direct product is referred to in some sources, when dealing with additive groups, as the (group) direct sum.
In such contexts, the symbol $G \times H$ can often be seen as $G \mathop {\dot +} H$.
On $\mathsf{Pr} \infty \mathsf{fWiki}$ we consider all groups, whatever their nature, to be instances of the same abstract concept, and therefore do not use this notation.
Warning
Note that $G$ and $H$, and so on, are not subsets of $G \times H$ and therefore are not subgroups of it either.
![]() | This page or section has statements made on it that ought to be extracted and proved in a Theorem page. In particular: Include the following as a separate page in its own right, then include a link to it in the "Also see" section. Name propositions for the statement are welcome. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by creating any appropriate Theorem pages that may be needed. To discuss this page in more detail, feel free to use the talk page. |
There exist subgroups in $G \times H$ which are isomorphic with $G$ and $H$ though, namely:
- $G \times \set {e_H}$ and $\set {e_G} \times H$
where $e_G$ and $e_H$ are identity elements of $G$ and $H$ respectively.
Also see
- Results about group direct products can be found here.
Generalizations
- Definition:External Direct Product on general algebraic structures, of which this is a specific example
- Definition:Binary Product (Category Theory)
Sources
- 1967: John D. Dixon: Problems in Group Theory ... (previous) ... (next): Introduction: Notation
- 1967: George McCarty: Topology: An Introduction with Application to Topological Groups ... (previous) ... (next): Chapter $\text{II}$: Groups: Direct Products
- 1971: Allan Clark: Elements of Abstract Algebra ... (previous) ... (next): Chapter $2$: The Definition of Group Structure: $\S 26 \zeta$
- 1974: Thomas W. Hungerford: Algebra ... (previous) ... (next): $\text{I}$: Groups: $\S 1$: Semigroups, Monoids and Groups
- 1978: Thomas A. Whitelaw: An Introduction to Abstract Algebra ... (previous) ... (next): Chapter $6$: An Introduction to Groups: Exercise $1$
- 1996: John F. Humphreys: A Course in Group Theory ... (previous) ... (next): Chapter $1$: Definitions and Examples: Example $1.10$