Integrable Function with Zero Integral on Sub-Sigma-Algebra is A.E. Zero/Proof 2
Jump to navigation
Jump to search
Theorem
Let $\struct {X, \Sigma, \mu}$ be a measure space.
Let $\GG$ be a sub-$\sigma$-algebra of $\Sigma$.
Let $f : X \to \overline \R$ be a $\GG$-integrable function.
Suppose that, for all $G \in \GG$:
- $\ds \int_G f \rd \mu = 0$
Then $f = 0$ $\mu$-almost everywhere.
Proof
![]() | This article needs to be tidied. Please fix formatting and $\LaTeX$ errors and inconsistencies. It may also need to be brought up to our standard house style. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Tidy}} from the code. |
In view of Measurable Function Zero A.E. iff Absolute Value has Zero Integral, we shall show:
- $\ds \int \size f \rd \mu = 0$
Since $f$ is $\GG$-measurable:
- $G_+ := \set {x \in X : \map f x > 0} \in \GG$
and:
- $G_- := \set {x \in X : \map f x \le 0} \in \GG$
On the one hand:
\(\ds \int f^+ \rd \mu\) | \(=\) | \(\ds \int f \cdot \chi_{G_+} \rd \mu\) | $f^+$ is positive part of $f$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_{G_+} f \rd \mu\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 0\) | by hypothesis |
On the other hand, from $f \cdot \chi_{G_-} \le 0$ follows:
\(\ds \paren {f \cdot \chi_{G_-} }^+\) | \(=\) | \(\ds 0\) |
and:
\(\ds \paren {f \cdot \chi_{G_-} }^-\) | \(=\) | \(\ds -\paren {f \cdot \chi_{G_-} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {-f} \cdot \chi_{G_-}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds f^-\) | $f^-$ is negative part of $f$ |
Thus:
\(\ds \int_{G_-} f \rd \mu\) | \(=\) | \(\ds \int f \cdot \chi_{G_-} \rd \mu\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int \paren {f \cdot \chi_{G_-} }^+ \rd \mu - \int \paren {f \cdot \chi_{G_-} }^- \rd \mu\) | integral of $f \cdot \chi_{G_-}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds -\int f^- \rd \mu\) |
which implies:
\(\ds \int f^- \rd \mu\) | \(=\) | \(\ds -\int f \cdot \chi_{G_-} \rd \mu\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -\int_{G_-} f \rd \mu\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 0\) | by hypothesis |
Therefore:
- $\ds \int \size f \rd \mu = \int f^+ \rd \mu + \int f^- \rd \mu = 0$
$\blacksquare$