Integral of Exponent of Half Square over Reals

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int_{\mathop \to -\infty}^{\mathop \to +\infty} e^{- x^2 / 2} \rd x = \sqrt {2 \pi}$


Proof

Let $t = \dfrac {x^2} 2$.

Then:

\(\ds \int_0^{\mathop \to +\infty} e^{- x^2 / 2} \rd x\) \(=\) \(\ds \int_0^{\mathop \to +\infty} \paren {2 t} e^{-t} \rd t\) Integration by Substitution
\(\ds \) \(=\) \(\ds \frac 1 {\sqrt 2} \map \Gamma {\frac 1 2}\) Definition of Gamma Function
\(\ds \) \(=\) \(\ds \frac 1 {\sqrt 2} \sqrt \pi\) Gamma Function of One Half
\(\ds \) \(=\) \(\ds \frac {\sqrt {2 \pi} } 2\) multiplying top and bottom by $\sqrt 2$


We have that $e^{- x^2 / 2}$ is an even function.

From Definite Integral of Even Function: Corollary:

$\ds \int_{\mathop \to -\infty}^{\mathop \to +\infty} e^{- x^2 / 2} \rd x = 2 \int_0^{\mathop \to +\infty} e^{- x^2 / 2} \rd x$

Hence the result.

$\blacksquare$


Sources