Integral of Integrable Function is Additive/Complex Function
Jump to navigation
Jump to search
Theorem
Let $\struct {X, \Sigma, \mu}$ be a measure space.
Let $\struct {\C, \map \BB \C}$ be the complex numbers made into a measurable space with its Borel $\sigma$-algebra.
Let $f, g : X \to \C$ be a $\mu$-integrable function.
Then $f + g$ is $\mu$-integrable and:
- $\ds \int \paren {f + g} \rd \mu = \int f \rd \mu + \int g \rd \mu$
Proof
From Addition of Real and Imaginary Parts, we have:
- $\map \Re {f + g} = \map \Re f + \map \Re g$
and:
- $\map \Im {f + g} = \map \Im f + \map \Im g$
Since $f$ is $\mu$-integrable:
- $\map \Re f$ and $\map \Im f$ are $\mu$-integrable.
Similarly since $g$ is $\mu$-integrable:
- $\map \Re g$ and $\map \Im g$ are $\mu$-integrable.
From Integral of Integrable Function is Additive, we have:
- $\map \Re f + \map \Re g = \map \Re {f + g}$ is $\mu$-integrable
with:
- $\ds \int \map \Re {f + g} \rd \mu = \int \map \Re f \rd \mu + \int \map \Re g \rd \mu$
Also from Integral of Integrable Function is Additive, we have:
- $\map \Im f + \map \Im g = \map \Im {f + g}$ is $\mu$-integrable
with:
- $\ds \int \map \Im {f + g} \rd \mu = \int \map \Im f \rd \mu + \int \map \Im g \rd \mu$
Hence $f + g$ is $\mu$-integrable.
Further, we have:
\(\ds \int \paren {f + g} \rd \mu\) | \(=\) | \(\ds \int \map \Re {f + g} \rd \mu + i \int \map \Im {f + g} \rd \mu\) | Definition of Integral of Complex Measure-Integrable Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\int \map \Re f \rd \mu + \int \map \Re g \rd \mu} + i \paren {\int \map \Im f \rd \mu + \int \map \Im g \rd \mu}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\int \map \Re f \rd \mu + i \int \map \Im f \rd \mu} + \paren {\int \map \Re g \rd \mu + i \int \map \Im g \rd \mu}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int f \rd \mu + \int g \rd \mu\) |
$\blacksquare$