Integral of Integrable Function is Additive
Theorem
Let $\struct {X, \Sigma, \mu}$ be a measure space.
Let $f, g: X \to \R$ be $\mu$-integrable functions.
Then $f + g$ is $\mu$-integrable, with:
- $\ds \int \paren {f + g} \rd \mu = \int f \rd \mu + \int g \rd \mu$
Corollary 1
Let $f, g: X \to \overline \R$ be $\mu$-integrable functions.
Suppose that the pointwise sum $f + g$ is well-defined.
Then $f + g$ is $\mu$-integrable, with:
- $\ds \int \paren {f + g} \rd \mu = \int f \rd \mu + \int g \rd \mu$
Corollary 2
Let $f, g: X \to \overline \R$ be $\mu$-integrable functions.
Suppose that the pointwise difference $f - g$ is well-defined.
Then $f - g$ is $\mu$-integrable, with:
- $\ds \int \paren {f - g} \rd \mu = \int f \rd \mu - \int g \rd \mu$
Complex Function
Let $\struct {X, \Sigma, \mu}$ be a measure space.
Let $\struct {\C, \map \BB \C}$ be the complex numbers made into a measurable space with its Borel $\sigma$-algebra.
Let $f, g : X \to \C$ be a $\mu$-integrable function.
Then $f + g$ is $\mu$-integrable and:
- $\ds \int \paren {f + g} \rd \mu = \int f \rd \mu + \int g \rd \mu$
Proof
From Pointwise Sum of Measurable Functions is Measurable:
- $f + g$ is $\Sigma$-measurable.
From Function Measurable iff Positive and Negative Parts Measurable we have that:
- $\paren {f + g}^+$ and $\paren {f + g}^-$ are $\Sigma$-measurable.
Since $f$ and $g$ are $\mu$-integrable, we have that $f$ and $g$ are also $\Sigma$-measurable.
Then from Function Measurable iff Positive and Negative Parts Measurable we have that:
- $f^+$, $f^-$, $g^+$ and $g^-$ are $\Sigma$-measurable.
We now want to show that:
- $\ds \int \paren {f + g}^+ \rd \mu < \infty$
and:
- $\ds \int \paren {f + g}^- \rd \mu < \infty$
From Bound for Positive Part of Pointwise Sum of Functions, we have:
- $\paren {f + g}^+ \le f^+ + g^+$
Then:
\(\ds \int \paren {f + g}^+ \rd \mu\) | \(\le\) | \(\ds \int \paren {f^+ + g^+} \rd \mu\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int f^+ \rd \mu + \int g^+ \rd \mu\) | Integral of Positive Measurable Function is Additive | |||||||||||
\(\ds \) | \(<\) | \(\ds \infty\) | since $f$ and $g$ are $\mu$-integrable, both integrals are finite |
From Bound for Negative Part of Pointwise Sum of Functions, we have:
- $\paren {f + g}^- \le f^- + g^-$
Then:
\(\ds \int \paren {f + g}^- \rd \mu\) | \(\le\) | \(\ds \int \paren {f^- + g^-} \rd \mu\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int f^- \rd \mu + \int g^- \rd \mu\) | Integral of Positive Measurable Function is Additive | |||||||||||
\(\ds \) | \(<\) | \(\ds \infty\) | since $f$ and $g$ are $\mu$-integrable, both integrals are finite |
Now, we will show that:
- $\ds \int \paren {f + g} \rd \mu = \int f \rd \mu + \int g \rd \mu$
From Difference of Positive and Negative Parts, we have:
- $f + g = \paren {f + g}^+ - \paren {f + g}^-$
On the other hand, we have:
\(\ds f + g\) | \(=\) | \(\ds \paren {f^+ - f^-} + \paren {g^+ - g^-}\) | Difference of Positive and Negative Parts | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {f^+ + g^+} - \paren {f^- + g^-}\) |
That is:
- $\paren {f^+ + g^+} - \paren {f^- + g^-} = \paren {f + g}^+ - \paren {f + g}^-$
From Integral of Positive Measurable Function is Additive, we have:
- $f^+ + g^+$ and $f^- + g^-$ are $\mu$-integrable.
From Integral of Integrable Function is Additive: Lemma, we then have:
- $\ds \int \paren {f^+ + g^+} \rd \mu - \int \paren {f^- + g^-} \rd \mu = \int \paren {f + g}^+ \rd \mu - \int \paren {f + g}^- \rd \mu$
From Integral of Positive Measurable Function is Additive, we have:
- $\ds \int \paren {f^+ + g^+} \rd \mu = \int f^+ \rd \mu + \int g^+ \rd \mu$
and:
- $\ds \int \paren {f^- + g^-} \rd \mu = \int f^- \rd \mu + \int g^- \rd \mu$
Hence:
\(\ds \int \paren {f + g} \rd \mu\) | \(=\) | \(\ds \int \paren {f + g}^+ \rd \mu - \int \paren {f + g}^- \rd \mu\) | Definition of Integral of Integrable Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \int f^+ \rd \mu + \int g^+ \rd \mu - \paren {\int f^- \rd \mu + \int g^- \rd \mu}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\int f^+ \rd \mu - \int f^- \rd \mu} + \paren {\int g^+ \rd \mu - \int g^- \rd \mu}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int f \rd \mu + \int g \rd \mu\) | Definition of Integral of Integrable Function |
$\blacksquare$
Sources
- 2005: René L. Schilling: Measures, Integrals and Martingales ... (previous) ... (next): $10.4 \ \text{(ii)}$