Integral of Power/Conventional Proof

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \forall n \in \R_{\ne -1}: \int_0^b x^n \rd x = \frac {b^{n + 1} } {n + 1}$


Proof

From the Fundamental Theorem of Calculus:

$(1): \quad \ds \int_0^b x^n \rd x = \bigintlimits {\map F x} 0 b = \map F b - \map F 0$

where $\map F x$ is a primitive of $x^n$.


By Primitive of Power, $\dfrac {x^{n + 1} } {n + 1}$ is a primitive of $x^n$.


Then:

\(\ds \int_0^b x^n \rd x\) \(=\) \(\ds \intlimits {\frac {x^{n + 1} } {n + 1} } 0 b\) substituting $\dfrac {x^{n + 1} } {n + 1}$ for $F$ in $(1)$
\(\ds \) \(=\) \(\ds \frac {b^{n + 1} } {n + 1} - \frac {0^{n + 1} } {n + 1}\)
\(\ds \) \(=\) \(\ds \frac {b^{n + 1} } {n + 1}\)

$\blacksquare$