Integral to Infinity of e^-t by Error Function of Root t

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int_0^\infty e^{-t} \erf \sqrt t \rd t = \dfrac {\sqrt 2} 2$

where $\erf$ denotes the error function.


Proof

Using the technique of Evaluation of Integral using Laplace Transform:

\(\ds \int_0^\infty e^{-s t} \erf \sqrt t \rd t\) \(=\) \(\ds \dfrac 1 {s \sqrt {s + 1} }\) Laplace Transform of Error Function of Root
\(\ds \leadsto \ \ \) \(\ds \int_0^\infty \erf \sqrt t \rd t\) \(=\) \(\ds \dfrac 1 {1 \sqrt {1 + 1} }\) letting $s \to 0^+$
\(\ds \) \(=\) \(\ds \dfrac 1 {\sqrt 2}\) simplifying
\(\ds \) \(=\) \(\ds \dfrac {\sqrt 2} 2\)

$\blacksquare$


Sources