Interior of Set of Real Numbers in Complex Numbers is Empty
Jump to navigation
Jump to search
Theorem
Let $\tuple {\C, d}$ be the complex Euclidean space.
Let $\R$ be the subspace of real numbers.
Then the interior of $\R$ in $\C$ is the empty set $\O$.
Corollary
Let $\tuple {\C, d}$ be the complex Euclidean space.
Consider $S \subseteq \R$ as a topological subspace of $\tuple {\C, d}$.
Then the interior of $S$ in $\C$ is the empty set $\O$.
Proof
Aiming for a contradiction, suppose that:
- $\R^\circ \ne \O$
Let $x \in \R^\circ$.
From the definition of an open subset of $\C$, there exists $\epsilon > 0$ such that:
- $\set {z \in \C : \cmod {z - x} < \epsilon} \subseteq \R^\circ$
Consider:
- $\ds z = x + \frac \epsilon 2 i \in \C \setminus \R$
Then, we have:
- $\ds \cmod {z - x} = \cmod {x + \frac \epsilon 2 i - x} = \frac \epsilon 2 < \epsilon$
Hence $z \in \R^\circ$.
But by the definition of interior, we have $\R^\circ \subseteq \R$.
This contradicts the fact that $z \in \C \setminus \R$.
$\blacksquare$