Intersection of Subfields is Subfield

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {F, +, \circ}$ be a field.

Let $\mathbb K$ be a non-empty set of subfields of $F$.


Then the intersection $\bigcap \mathbb K$ of the members of $\mathbb K$ is itself a subfield of $F$.


Proof

Let $L = \bigcap \mathbb K$.

A field is by definition also a division subring.

From Intersection of Division Subrings is Division Subring, $L$ is itself a division subring of $F$.


As $\struct {F, +, \circ}$ is a field, $\circ$ is commutative on $F$.

By Restriction of Commutative Operation is Commutative, it follows that $\circ$ is also commutative on $L$.

Thus $\struct {L, +, \circ}$ is a division ring where $\circ$ is commutative.

Thus, by definition, of $\struct {L, +, \circ}$ is a field.

Hence the result.

$\blacksquare$


Sources