Definition:Field (Abstract Algebra)

From ProofWiki
Jump to: navigation, search

This page is about field in abstract algebra. For other uses, see Definition:Field.

Definition

A field is a non-trivial division ring whose ring product is commutative.


Thus, let $\left({F, +, \times}\right)$ be an algebraic structure.


Then $\left({F, +, \times}\right)$ is a field if and only if:

$(1): \quad$ the algebraic structure $\left({F, +}\right)$ is an abelian group
$(2): \quad$ the algebraic structure $\left({F^*, \times}\right)$ is an abelian group where $F^* = F \setminus \left\{{0}\right\}$
$(3): \quad$ the operation $\times$ distributes over $+$.


This definition gives rise to the field axioms, as follows:


Field Axioms

The properties of a field are as follows.

For a given field $\left({F, +, \circ}\right)$, these statements hold true:

\((A0):\)   Closure under addition      \(\displaystyle \forall x, y \in F:\) \(\displaystyle x + y \in F \)             
\((A1):\)   Associativity of addition      \(\displaystyle \forall x, y, z \in F:\) \(\displaystyle \left({x + y}\right) + z = x + \left({y + z}\right) \)             
\((A2):\)   Commutativity of addition      \(\displaystyle \forall x, y \in F:\) \(\displaystyle x + y = y + x \)             
\((A3):\)   Identity element for addition      \(\displaystyle \exists 0_F \in F: \forall x \in F:\) \(\displaystyle x + 0_F = x = 0_F + x \)             $0_F$ is called the zero
\((A4):\)   Inverse elements for addition      \(\displaystyle \forall x: \exists x' \in F:\) \(\displaystyle x + x' = 0_F = x' + x \)             $x'$ is called a negative element
\((M0):\)   Closure under product      \(\displaystyle \forall x, y \in F:\) \(\displaystyle x \circ y \in F \)             
\((M1):\)   Associativity of product      \(\displaystyle \forall x, y, z \in F:\) \(\displaystyle \left({x \circ y}\right) \circ z = x \circ \left({y \circ z}\right) \)             
\((M2):\)   Commutativity of product      \(\displaystyle \forall x, y \in F:\) \(\displaystyle x \circ y = y \circ x \)             
\((M3):\)   Identity element for product      \(\displaystyle \exists 1_F \in F, 1_F \ne 0_F: \forall x \in F:\) \(\displaystyle x \circ 1_F = x = 1_F \circ x \)             $1_F$ is called the unity
\((M4):\)   Inverse elements for product      \(\displaystyle \forall x \in F^*: \exists x^{-1} \in F^*:\) \(\displaystyle x \circ x^{-1} = 1_F = x^{-1} \circ x \)             
\((D):\)   Product is distributive over addition      \(\displaystyle \forall x, y, z \in F:\) \(\displaystyle x \circ \left({y + z}\right) = \left({x \circ y}\right) + \left({x \circ z}\right) \)             


These are called the field axioms.


Internationalization

Field is translated:

In Dutch: lichaam  (literally: body)
In French: corps  (literally: body)
In German: Körper  (literally: body)
In Russian: Поле  (literally: field)  Pronounced:  póh-lye
In Spanish: cuerpo  (literally: body)


Linguistic Note

Note that while in English the word for this entity is field, its name in other European languages translates as body.

The original work was done by Richard Dedekind, who used the word Körper. When translating his work into English, Eliakim Moore mistakenly used the word field. The translator into French did not make the same mistake.


Also see

  • Results about fields can be found here.


Sources