Intersection of Transitive Relations is Transitive/General Result
Jump to navigation
Jump to search
Theorem
Let $\family {\RR_i: i \mathop \in I}$ be an $I$-indexed set of transitive relations on a set $S$.
Then their intersection $\ds \bigcap_{i \mathop \in I} \RR_i$ is also a transitive relation on $S$.
Proof
Let $\ds \tuple {x, y} \in \bigcap_{i \mathop \in I} \RR_i$ and $\ds \tuple {y, z} \in \bigcap_{i \mathop \in I} \RR_i$ be transitive relations on an arbitrary set $S$.
Then by definition of intersection:
- $\tuple {x, y} \in \RR_i$ for all $i \in I$
- $\tuple {y, z} \in \RR_i$ for all $i \in I$
Since each $\RR_i$ is transitive:
- $\tuple {x, z} \in \RR_i$ for all $i \in I$
so, by definition of intersection:
- $\ds \tuple {x, z} \in \bigcap_{i \mathop \in I} \RR_i$
Hence $\ds \bigcap_{i \mathop \in I} \RR_i$ is transitive.
$\blacksquare$