Inverse of Group Commutator

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {G, \circ}$ be a group whose identity is $e$.

Let $\sqbrk {g, h}$ denote the commutator of $g$ and $h$.


Then $\sqbrk {g, h}$ is the inverse of $\sqbrk {h, g}$:

$\sqbrk {g, h} = \sqbrk {h, g}^{-1}$


Proof

\(\ds \sqbrk {g, h} \circ \sqbrk {h, g}\) \(=\) \(\ds \paren {g^{-1} \circ h^{-1} \circ g \circ h} \circ \paren {h^{-1} \circ g^{-1} \circ h \circ g}\) Definition of Commutator of Group Elements
\(\ds \) \(=\) \(\ds \paren {g^{-1} \circ h^{-1} \circ g \circ h} \circ \paren {g^{-1} \circ h^{-1} \circ g \circ h}^{-1}\) Inverse of Group Product: General Result
\(\ds \) \(=\) \(\ds e\) Group Axiom $\text G 3$: Existence of Inverse Element
\(\ds \) \(=\) \(\ds \paren {g^{-1} \circ h^{-1} \circ g \circ h}^{-1} \circ \paren {g^{-1} \circ h^{-1} \circ g \circ h}\) Group Axiom $\text G 3$: Existence of Inverse Element
\(\ds \) \(=\) \(\ds \paren {h^{-1} \circ g^{-1} \circ h \circ g} \circ \paren {g^{-1} \circ h^{-1} \circ g \circ h}\) Inverse of Group Product: General Result
\(\ds \) \(=\) \(\ds \sqbrk {h, g} \circ \sqbrk {g, h}\) Definition of Commutator of Group Elements

$\blacksquare$