Inverse of Pascal's Triangle expressed as Matrix

From ProofWiki
Jump to navigation Jump to search

Theorem

Consider Pascal's triangle expressed as a (square) matrix $\mathbf M$, with the top left element holding $\dbinom 0 0$.

$\begin{pmatrix}

1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 1 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 1 & 3 & 3 & 1 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 1 & 4 & 6 & 4 & 1 & 0 & 0 & 0 & 0 & \cdots \\ 1 & 5 & 10 & 10 & 5 & 1 & 0 & 0 & 0 & \cdots \\ 1 & 6 & 15 & 20 & 15 & 6 & 1 & 0 & 0 & \cdots \\ 1 & 7 & 21 & 35 & 35 & 21 & 7 & 1 & 0 & \cdots \\ 1 & 8 & 28 & 56 & 70 & 56 & 28 & 8 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\ \end{pmatrix}$


The inverse $\mathbf M^{-1}$ of $\mathbf M$ is the same as $\mathbf M$ but with alternate elements negated, starting with the elements below the main diagonal:

$\begin{pmatrix}
1 &  0 &   0 &   0 &   0 &   0 &  0 &  0 & 0 & \cdots \\

-1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\

1 & -2 &   1 &   0 &   0 &   0 &  0 &  0 & 0 & \cdots \\

-1 & 3 & -3 & 1 & 0 & 0 & 0 & 0 & 0 & \cdots \\

1 & -4 &   6 &  -4 &   1 &   0 &  0 &  0 & 0 & \cdots \\

-1 & 5 & -10 & 10 & -5 & 1 & 0 & 0 & 0 & \cdots \\

1 & -6 &  15 & -20 &  15 &  -6 &  1 &  0 & 0 & \cdots \\

-1 & 7 & -21 & 35 & -35 & 21 & -7 & 1 & 0 & \cdots \\

1 & -8 &  28 & -56 &  70 & -56 & 28 & -8 & 1 & \cdots \\

\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\ \end{pmatrix}$


Proof

We have from Sum over $k$ of $\dbinom r k$ by $\dbinom {s + k} n$ by $\left({-1}\right)^{r - k}$: Corollary:

$\ds \sum_k \binom r k \binom k n \paren {-1}^{r - k} = \delta_{n r}$

where $\delta_{n r}$ is the Kronecker delta.


By definition of matrix multiplication, this is the element $a_{r n}$ of the matrix formed by multiplying the two matrices above.

As can be seen, this results in the identity matrix .

$\blacksquare$


Sources