Inverse of Stirling's Triangle expressed as Matrix

From ProofWiki
Jump to navigation Jump to search

Theorem

Consider Stirling's triangle of the first kind (signed) expressed as a (square) matrix $\mathbf A$, with the top left element holding $\map s {0, 0}$.

$\begin{pmatrix}

1 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 & 0 & 0 & \cdots \\ 0 & -1 & 1 & 0 & 0 & 0 & \cdots \\ 0 & 2 & -3 & 1 & 0 & 0 & \cdots \\ 0 & -6 & 11 & -6 & 1 & 0 & \cdots \\ 0 & 24 & -50 & 35 & -10 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\ \end{pmatrix}$


Then consider Stirling's triangle of the second kind expressed as a (square) matrix $\mathbf B$, with the top left element holding $\ds {0 \brace 0}$.

$\begin{pmatrix}

1 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 1 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 3 & 1 & 0 & 0 & \cdots \\ 0 & 1 & 7 & 6 & 1 & 0 & \cdots \\ 0 & 1 & 15 & 25 & 10 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\ \end{pmatrix}$

Then:

$\mathbf A = \mathbf B^{-1}$

that is:

$\mathbf B = \mathbf A^{-1}$


Proof

First note that from Relation between Signed and Unsigned Stirling Numbers of the First Kind:

$\ds {n \brack m} = \paren {-1}^{n + m} \map s {n, m}$


From First Inversion Formula for Stirling Numbers:

$\ds \sum_k {n \brack k} {k \brace m} \paren {-1}^{n - k} = \delta_{m n}$

From Second Inversion Formula for Stirling Numbers:

$\ds \sum_k {n \brace k} {k \brack m} \paren {-1}^{n - k} = \delta_{m n}$

By definition of matrix multiplication, the element $a_{r n}$ of the matrix formed by multiplying the two matrices above.

As can be seen, this results in the identity matrix .

$\blacksquare$


Sources