Inversion Mapping Reverses Ordering in Ordered Group/Corollary/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {G, \circ, \preccurlyeq}$ be an ordered group with identity $e$.

Let $x \in G$.


Then the following equivalences hold:

\(\ds \forall x \in G: \, \) \(\ds x \preccurlyeq e\) \(\iff\) \(\ds e \preccurlyeq x^{-1}\)
\(\ds e \preccurlyeq x\) \(\iff\) \(\ds x^{-1} \preccurlyeq e\)
\(\ds x \prec e\) \(\iff\) \(\ds e \prec x^{-1}\)
\(\ds e \prec x\) \(\iff\) \(\ds x^{-1} \prec e\)


Proof

By Inversion Mapping Reverses Ordering in Ordered Group:

\(\ds \forall x \in G: \, \) \(\ds x \preccurlyeq e\) \(\iff\) \(\ds e^{-1} \preccurlyeq x^{-1}\)
\(\ds e \preccurlyeq x\) \(\iff\) \(\ds x^{-1} \preccurlyeq e^{-1}\)
\(\ds x \prec e\) \(\iff\) \(\ds e^{-1} \prec x^{-1}\)
\(\ds e \prec x\) \(\iff\) \(\ds x^{-1} \prec e^{-1}\)

Since $e^{-1} = e$, the theorem holds.

$\blacksquare$