Jensen's Formula/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ be an open subset of the complex plane containing the closed disk:

$D_r = \set {z \in \C : \cmod z \le r}$

of radius $r$ about $0$.

Let $f: S \to \C$ be holomorphic on $S$.

Let $f$ have no zeroes on the circle $\cmod z = r$.

Let $\map f 0 \ne 0$.

Let $\rho_1, \ldots, \rho_n$ be the zeroes of $f$ in $D_r$, counted with multiplicity.


Then:

$(1): \quad \ds \frac 1 {2 \pi} \int_0^{2 \pi} \ln \cmod {\map f {r e^{i \theta} } } \rd \theta = \ln \cmod {\map f 0} + \sum_{k \mathop = 1}^n \paren {\ln r - \ln \size {\rho_k} }$


Proof

Write

$\map f z = \dfrac {r^2 - z \overline {\rho_1} } {r \paren {z - \rho_1} } \cdots \dfrac {r^2 - z \overline {\rho_n} } {r \paren {z - \rho_n} } \map g z$

so $\map g z \ne 0$ for $z \in D_r$.



It is sufficient to check equality for each factor of $f$ in this expansion.


When $\cmod z = r$, we have:

$\dfrac 1 z = \dfrac {\overline z} {r^2}$

and:

$\cmod {\dfrac z r} = 1$

where $\overline z$ denotes the complex conjugate of $z$.


So:

\(\ds \cmod {\frac {r^2 - z \overline {\rho_k} } {r \paren {z - \rho_k} } }\) \(=\) \(\ds \frac {\cmod {r^2 - \overline z \rho_k} } {\cmod {r \paren {z - \rho_k} } }\)
\(\ds \) \(=\) \(\ds \frac {\cmod {1 - \overline z \rho_k / r^2} } {\cmod {z / r - \rho_k / r} }\)
\(\ds \) \(=\) \(\ds \frac {\cmod {1 - \overline z \rho_k / r^2} } {\cmod {1 - \rho_k / z} }\)
\(\ds \) \(=\) \(\ds \frac {\cmod {1 - \overline z \rho_k / r^2} } {\cmod {1 - \overline z \rho_k / r^2} }\)
\(\ds \) \(=\) \(\ds 1\)

so the left hand side is $0$.



Moreover:

$\\ln \cmod {\dfrac {r^2 - 0 \overline {\rho_k} } {r \paren {0 - \rho_k} } } = \ln \cmod {\rho_k} - \ln r$

so the right hand side is $0$.

Therefore, the formula holds for $\dfrac {r^2 - z \overline {\rho_k} } {r \paren {z - \rho_k} }$.


Since:

$r^2 - z \overline {\rho_i} = 0 \implies \cmod z = r^2 / \cmod {\overline {\rho_i} } > r$

it follows that $\map g z$ is holomorphic without zeroes on $D_r$.

So the right hand side is $\ln \size {\map g 0}$.

On the other hand, by the mean value property:

$\ds \dfrac 1 {2 \pi} \int_0^{2 \pi} \ln \size {\map g {r e^{i \theta} } } \rd \theta = \ln \map g 0$

as required.

$\blacksquare$


Source of Name

This entry was named for Johan Jensen.