Kaprekar's Symmetry

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n$ be a Kaprekar number with $D$ digits.

Then $10^D - n$ is also a Kaprekar number.


Examples

\(\ds 1 + 9\) \(=\) \(\ds 10\) $1$st and $2$nd Kaprekar numbers
\(\ds 45 + 55\) \(=\) \(\ds 100\) $3$rd and $4$th Kaprekar numbers
\(\ds 297 + 703\) \(=\) \(\ds 1000\) $6$th and $7$th Kaprekar numbers
\(\ds 2223 + 7777\) \(=\) \(\ds 10 \, 000\) $9$th and $16$th Kaprekar numbers
\(\ds 2728 + 7272\) \(=\) \(\ds 10 \, 000\) $10$th and $15$th Kaprekar numbers
\(\ds 04879 + 95 \, 121\) \(=\) \(\ds 100 \, 000\) $11$th and $23$rd Kaprekar numbers
\(\ds 4950 + 5050\) \(=\) \(\ds 10 \, 000\) $12$th and $13$th Kaprekar numbers


Proof

Since $n$ is a Kaprekar number of $D$ digits:

$\begin {cases} n^2 = a \times 10^D + b \\ n = a + b \end {cases}$

for some positive integers $a$ and $b$, $b < 10^D$.


Hence:

\(\ds \paren {10^D - n}^2\) \(=\) \(\ds 10^{2 D} - 2 n \times 10^D + n^2\)
\(\ds \) \(=\) \(\ds 10^{2 D} - 2 \paren {a + b} 10^D + a \times 10^D + b\)
\(\ds \) \(=\) \(\ds 10^D \paren {10^D - a - 2 b} + b\)

and we have:

$\paren {10^D - a - 2 b} + b = 10^D - a - b = 10^D - n$


Finally we check that $10^D - a - 2 b \ge 0$:

Aiming for a contradiction, suppose $10^D - a - 2 b \le -1$.

Then:

\(\ds \paren {10^D - n}^2\) \(=\) \(\ds 10^D \paren {10^D - a - 2 b} + b\)
\(\ds \) \(\le\) \(\ds -10^D + b\)
\(\ds \) \(<\) \(\ds 0\)

but squares are positive, a contradiction.


Hence $10^D - n$ is also a Kaprekar number of $D$ digits.

$\blacksquare$


Source of Name

This entry was named for Dattathreya Ramchandra Kaprekar.


Sources